
On The Unreasonable Effectiveness of Key Overwriting
Kenny Paterson
Applied Cryptography Group
ETH Zurich

WAC 6
August 20, 2023

With thanks to:
Martin Albrecht, Matilda Backendal, Lara Bruseghini, Miro Haller, Daniel
Huigens, Lenka Mareková

Overview
• Introducing Key Overwriting Attacks
• Easier: OpenPGP
• Harder: MEGA
• Wrap-up

2

Introducing Key Overwriting (KO) Attacks

3

(sk,pk) ← KGen
c ← Enc(pw,sk)

pk, c

Alice: pk, c
Bob: xx, yy
Charlie: zz, tt
…

Hi, I’m Alice, send me my keys

pk, c

sk ← Dec(pw,c)
Use sk, pk Response

Introducing Key Overwriting (KO) Attacks

4

(sk,pk) ← KGen
c ← Enc(pw,sk)

pk, c

Alice: pk, c
Bob: xx, yy
Charlie: zz, tt
…

Hi, I’m Alice, send me my keys

pk*, c*

sk* ← Dec(pw,c*)
Use sk*, pk* Response

Introducing Key Overwriting (KO) Attacks

5

• In a key overwriting attack, the adversary is able to overwrite
part or all of the victim’s keys AND observe what happens when
the modified keys are subsequently used.

• Adversary targets recovery of original keys (or maybe has a
weaker objective).

• Mostly relevant in public key setting, but also applies in
symmetric setting.

• Overwriting may be controlled or uncontrolled (or somewhere
in-between).

• Overwriting may be limited to public key only, or to private key
only, or be possible for both components.

• KO attacks are related to fault attacks, related key attacks, and
memory tampering attacks, cf. Bellcore attack on CRT-RSA.

Introducing Key Overwriting (KO) Attacks

6

• Adversary may be able to repeatedly overwrite
keys with adaptively chosen values.

• Its observation capability may be limited.
• Attacks may involve user interaction, which we

try to minimise.
• Keys may be validated by client software

before use: increasing the complexity of
attacks…

… or introducing new attack vectors!

Introducing Key Overwriting (KO) Attacks

7

Thesis of this talk:
KO attacks are a powerful weapon in the attacker’s
armoury that we should learn how to use!

Evidence:
• V. Klíma, T. Rosa. Attack on Private Signature Keys of the

OpenPGP Format, PGP (TM) Programs and Other Applications
Compatible with OpenPGP. IACR Cryptology ePrint Archive
2002/76.

• L. Bruseghini, K.G. Paterson, D. Huigens. Victory by KO:
Attacking OpenPGP Using Key Overwriting, ACM CCS 2022.

• M. Backendal, M. Haller, K.G. Paterson. MEGA: Malleable
Encryption Goes Awry, IEEE S&P 2023.

• M.R. Albrecht, M. Haller, L. Mareková, K.G. Paterson. Caveat
Implementor! Key Recovery Attacks on MEGA, Eurocrypt 2023.

Overview
• Introducing Key Overwriting Attacks
• Easier: OpenPGP
• Harder: MEGA
• Wrap-up

10

Public Key Setting – OpenPGP

12

• Widely-used email encryption standard, starting with RFC 2440.

• Increasingly used in cloud-based solutions with outsourced key storage, e.g.
ProtonMail, FlowCrypt.

• Now becoming used beyond email too, e.g. in Proton’s secure storage solution.

• Rich community of developers and different implementations:
• GPG, Sequoia, RNP, OpenPGP.js, gopenpgp,…

• Lot of legacy cryptography supported in OpenPGP.

• Has led to attacks, e.g. under-specified ElGamal encryption [DPS2021].

• OpenPGP crypto refresh now being worked on in IETF.
• https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh

Example OpenPGP Key Format: DSA

13

White fields: not cryptographically
protected.

Grey fields: protected using “hash-
then-encrypt” mechanism, so
confidentiality and some degree of
integrity.

à

We are in the setting where only the
public key can be overwritten.

DSA in OpenPGP

14

Klíma and Rosa Attack on OpenPGP

15

(sk=x, pk=(g,p,q,y=gx)) ← DSA.KGen
c ← Enc(pw,x)

pk, c

Alice: pk, c

Hi, I’m Alice, send me my key

pk* = (g*,p*,q*,y), c

x ← Dec(pw,c)

(r,s)
(r,s) ← DSA.Sign(x,(g*,p*,q*),m)

Select g*,p*,q* such that:

1. p* is prime with p*-1 smooth
2. q* > p* (!!)
3. g* generates (Zp*)*

Klíma and Rosa Attack on OpenPGP

16

(sk=x, pk=(g,p,q,y=gx)) ← DSA.KGen
c ← Enc(pw,x)

pk, c

Alice: pk, c

Hi, I’m Alice, send me my key

pk* = (g*,p*,q*,y), c

x ← Dec(pw,c)

(r,s)
(r,s) ← DSA.Sign(x,(g*,p*,q*),m)

r = ((g*)k mod p*) mod q*
= (g*)k mod p*

1. Recover k from r by solving DLP
in easy DLP group (Zp*)*.

2. Recover x from:
s = k-1(H(m)+xr) mod q*

Klíma and Rosa Attack – Summary

17

Select g*, p*, q* such that:

1. p* is prime with p*-1 smooth
2. q* > p* (!!)
3. g* generates (Zp*)*

• Extraction of the private key x from a single faulty signature!
• Somewhat artificial because of large q* (recall q* is typically small, e.g.

160-256 bits).
• Attack can be prevented by careful validation of (sk,pk) (but key validation

is not required or specified by OpenPGP).
• Most libraries are not vulnerable to this attack today because of restrictions

on parameter sizes.

r = ((g*)k mod p*) mod q*
= (g*)k mod p*

1. Recover k by solving DLP in
easy DLP group (Zp*)*.

2. Recover x from:
s = k-1(H(m)+xr) mod q*

Key Overwriting Attacks Against OpenPGP

18

ACM CCS 2022
https://www.kopenpgp.com/

Klíma and Rosa Rebooted

19

(sk=x, pk=(g,p,q,y=gx)) ← DSA.KGen
c ← Enc(pw,x)

pk, c

Alice: pk, c

Hi, I’m Alice, send me my key

pk* = (g*,p*,q*,y), c

x ← Dec(pw,c)

(r,s)
(r,s) ← DSA.Sign(x,(g*,p*,q*),m)

Select g*, p*, q* such that:

1. p* is prime
2. q* is small (e.g. 16 bits) and

divides p*-1
3. g* generates an order q*

subgroup of (Zp*)*

Klíma and Rosa Rebooted

20

(sk=x, pk=(g,p,q,y=gx)) ← DSA.KGen
c ← Enc(pw,x)

pk, c

Alice: pk, c

Hi, I’m Alice, send me my key

pk* = (g*,p*,q*,y), c

x ← Dec(pw,c)

(r,s)
(r,s) ← DSA.Sign(x,(g*,p*,q*),m)

w.h.p. there is exactly one value
y=(g*)x mod p* for which (r,s)
verifies against pk*.
• Offline, try all q* possible

values to recover x mod q*
• Work with several different q*;

recover x via CRT.r = ((g*)k mod p*) mod q*
s = k-1(H(m)+xr) mod q*

Cross Algorithm Attack on OpenPGP

21

(sk=x, pk =[x]P)) ← ECC.KGen
c ← Enc(pw,x)

pk, c

Alice: pk, c

Hi, I’m Alice, send me my key

pk* = DSA.pk(g*,p*,q*,y), c

(r,s)

x ← Dec(pw,c)
(r,s) ← DSA.Sign(x,(g*,p*,q*),m)

Run either of the
previous attacks to

recover x!

Cross Algorithm Attack on OpenPGP

22

Key Overwriting with Key Validation (KOKV)

23

(sk, pk) ← KGen
c ← Enc(pw,x) pk, c

Alice: pk, c

Hi, I’m Alice, send me my key

pk*, c*

sk* ← Dec(pw,c*)
Validate sk*, pk* by some means

Success/failure

KOKV Attack for DSA in GPG/libgcrypt

24

(sk=x, pk=(g,p,q,y=gx)) ← DSA.KGen
c ← Enc(pw,x) pk, c

Alice: pk, c

Hi, I’m Alice, send me my key

pk* = (g*,p*,q*,y*), c

x ← Dec(pw,c)
Check if (g*)x = y* mod p*

Success/failure

(see next
slide)

KOKV Attack for DSA in GPG/libgcrypt

25

• Denote unknown bits of x by x0, x1, x2,… (from LSB up).

• Set p* = 2t⋅h + 1, set g* of order 2 mod p*, i.e. g*= -1 mod p*.
• Now key validation takes place in a group of order 2 and only x mod 2 is relevant!

• Set y* = 1 = (g*)0 mod p*.
• Then (g*)x = y* mod p* ⇔ x = 0 mod 2.
• That is, key validation succeeds ⇔ x = 0 mod 2.
• So we recovered x0.

• Set g* of order 4 mod p*, set y* = (g*)x0 mod p*.
• Now only x mod 4 is relevant, and we already know x mod 2.
• (g*)x = y* mod p* ⇔ (g*)x0+2x1 = (g*)x0 mod p*

⇔ ((g*)2)x1 = 1 mod p*
⇔ x1 = 0 mod 2.

• So key validation succeeds iff x1 = 0 mod 2.
• We can recover one new bit of x per iteration.

Other Aspects

26

• Full analysis of KO and KOKV attacks against
OpenPGP spec and major implementations.

• Further attacks for non-CRT RSA and for
ElGamal encryption; fault-style attack against
EdDSA.

• Analysis of the extent to which two apps
based on OpenPGP are vulnerable
(ProtonMail, FlowCrypt).

• Discussion of countermeasures:
• Robust key validation.
• Use AEAD to bind key metadata and

public key (AD) to encrypted private key.
• Now adopted in OpenPGP Crypto

Refresh!

ACM CCS 2022 🏆
https://www.kopenpgp.com/

Overview
• Introducing Key Overwriting Attacks
• Easier: OpenPGP
• Harder: MEGA
• Wrap-up

27

28

MEGA

• MEGA – E2EE cloud storage and communication
platform with 280M registered users, 1000
Petabytes+ of stored data.

• Very strong security claims, promising users that
MEGA cannot access user data.

• Three recent research papers invalidate this
claim, all using KO attacks….

Each user has:
• a 128-bit encryption key ke derived from password
• a 128-bit master key kM
• a 2048-bit RSA keypair (pk, sk)
• file encryption keys kF1 , kF2 , . . .

The keys are encrypted using AES-ECB (!) and stored at server:
• [kM]ke
• [kF]kM , [sk]kM

Shared-file encryption keys k′F are encrypted under pk using RSA.
This RSA key is also used in the user login/authentication protocol.

29

MEGA Key Hierarchy

30

MEGA RSA Private Key Format

• Custom encoding of sk for RSA-CRT decryption, referred to as privk:
• the prime factors p, q of the RSA modulus,
• the secret exponent d,
• the value u = q−1 mod p.

• Each value is prefixed with a 2-byte length field.
• Split into 16-byte blocks for AES-ECB encryption with master key kM.

31

MEGA Login Procedure

ECB decryption using kM to
get privk, then

RSA-CRT decryption and
decoding, to recover sid́ .

• Threat model: malicious service provider trying to
access customer data.

• Goal: obtain ECB decryption capability under kM in
order to recover sk (or any kF).

• Attack cost measured mainly in the number of login
attempts, since each login requires user interaction.

• What about KO attacks?
• Use of ECB encryption means private keys are “somewhat

malleable”.
• Client always reconstructs public key from private key, so

cannot overwrite public key directly.

32

Attacking MEGA

33

PKC 2023
eprint.iacr.org/2022/914

IEEE S&P 2023
https://mega-awry.io/

Eurocrypt 2023
mega-caveat.github.io/

512 logins

6 logins
(on unpatched version)

2 logins
(on unpatched version)

Attacks Only Get Better…

34

Gadget 1: An ECB Encryption Oracle

• MEGAdrop allows anyone to upload files to a folder in the cloud storage of
the recipient.

• Client automatically re-encrypts the received shared-file keys.

A malicious MEGA server can construct an ECB encryption oracle for kM
without user interaction and without leaving any traces!

35

Gadget 2: ECB Decryption Oracle from [BHP23]

Post-process sid́
to recover two
target plaintext
blocks.

[q,p,d,u*]kM with
u* containing two
target ECB blocks

RSA.Enc(pk*,m*)
with m* = u⋅q.

RSA-CRT decryption
using u* in place of u
à sid́ contains bytes
of q⋅u*!

36

Combining the Gadgets
• Use ECB encryption oracle (Gadget 1) to overwrite [privk]kM with a

completely known RSA private key (q*,p*,d*,u*).
• Use ECB decryption oracle (Gadget 2) four times to recover all 8 blocks (1024

bits) of the original q.
• Would require 4 logins.
• Does not quite work because of bad block alignments.
• Guess and check for last 16 bits OR recover 9 blocks with 5 logins.

Last 16 bits of q
lie in the 9th ECB

block.

37

Combining the Gadgets

• Instead:

• Recover last four 4 full blocks of q using just 2 logins à 512 bits of q.
• For each guess for the 16 LSBs of q:

• Use 512+16 = 528 LSBs of q in a lattice attack to try to recover all of q.
• Check if q divides user’s RSA modulus.

• Theory says this should work; our experiments show that it works just fine.

• Open problem: is there an attack on unpatched MEGA requiring only 1
login?

38

Patched MEGA client-side parsing and decryption

MegaDec(kM, [privk]kM , [m]pk , uh):
1.1 sk ← DecryptPrivk(kM, [privk]kM) // AES-ECB

2.2 sidʹ ← DecryptSid(sk , [m]pk) // RSA-CRT

3.3 Return sidʹ

Both steps perform extensive validity checking on the decrypted
values and return distinguishable errors to the server!

39

Updated MEGA client-side parsing and decryption

Explicit errors due to validity checking:
• In DecryptSid(sk,·), a length check on the plaintext together with a

legacy padding check reveal if the second byte of m is 0.
• Yields a novel “small subgroup meets Bleichenbacher” attack.

Implicit errors due to bugs in the low-level library:
• In DecryptPrivk(kM, ·), a failure when recomputing u ← q-1 mod p reveals

if gcd(p, q) = 1.
• Yields a novel attack based on modular inverses.

Both attacks involve controlled key overwriting of a victim user’s RSA
private key via ECB encryption oracle!

• Let [B]kM be the target ciphertext block.
• Let ⊥inv be the error output by MegaDec if gcd(p, q) ≠ 1.
• Main idea is to use key overwriting to construct [privk∗]kM (using ECB enc oracle and [B]kM)

such that
• p* mod r = 0 for small prime r.
• q* contains B in the least-significant positions.
• q* mod r has an attacker-controlled variable value.
• e.g. q* = 21024 + 2128+16⋅t + 216⋅B + 1 for attacker-selected t.

• Now ⊥inv is output by MegaDec at client if and only if q* mod r = 0, i.e.
⊥inv iff 21024 + 2128+16⋅t + 216⋅B + 1 = 0 mod r. (1)

• Vary t mod r across logins until ⊥inv is output, and solve (1) to recover B mod r:

40

Attack Based on Modular Inverses

• So we can learn B mod r for small prime r in about r logins.
• Repeat for a set of primes ri such that their product has 128 bits.
• We can then use CRT to learn B from the values of B mod ri.
• Average cost: 627 login attempts and 66-91 ECB encryption oracle queries

to recover one 128-bit block B.
• Run this attack 4 times to recover last 4 full blocks of original q, and apply

lattice attack again.
• Recover RSA private key using approximately 2500 logins.
• So MEGA’s updates did not improve security much!

41

Attack Based on Modular Inverses

Overview
• Introducing Key Overwriting Attacks
• Easier: OpenPGP
• Harder: MEGA
• Wrap-up

43

• ECB mode
• Exotic + home-made encryption modes
• Lack of integrity mechanisms
• Improper use of integrity, e.g. MtE, E&M
• Padding oracle attacks
• Nonce reuse
• Lack of proper key separation/key reuse problems
• Bad interactions between different protocols
• Bespoke RSA padding schemes
• Roll-your-own authentication and key exchange protocols
• Naïve use of NaCl and other libraries
• Use of weak PRNGs or homebrew randomness generation methods
• Compression combined with encryption
• Key Overwriting!

44

Armoury of Attack Vectors

• Find other instances where KO/KOKV attacks apply.
• Likely in badly-designed systems where key storage is

outsourced to untrusted third parties.
• Study connections between KO/KOKV and fault attacks as per

CHES community.
• And to tampering attacks as studied in theoretical

community.
• AEAD countermeasure seems clear.

• Do we need a framework of formal security definitions and
relations exploring security against KO/KOKV attacks?

• Thanks again to my co-authors:
Martin Albrecht, Matilda Backendal, Lara Bruseghini,
Miro Haller, Daniel Huigens, Lenka Mareková.

45

Future Work

Professor Kenny Paterson
Applied Cryptography Group
kenny.paterson@inf.ethz.ch

ETH Zurich
Applied Cryptography Group
Department of Computer Science
Universitätstrasse 6
8092 Zurich, Swizterland

https://appliedcrypto.ethz.ch/

Contact:

https://appliedcrypto.ethz.ch/

