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Imagine a world... This is Matrix.

...where it is as simple to message or call
anyone as it is to send them an email.

Matrix is an open source project that publishes the
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Abstract—We report several practically-exploitable crypto-
graphic vulnerabilities in the Matrix standard for federated real-
time communication and its flagship client and prototype imple-
mentation, Element. These, together, invalidate the confidentiality
and authentication guarantees claimed by Matrix against a
malicious server. This is despite Matrix’ cryptographic routines
being constructed from well-known and -studied cryptographic
building blocks. The vulnerabilities we exploit differ in their
nature (insecure by design, protocol confusion, lack of domain
separation, implementation bugs) and are distributed broadly
across the different subprotocols and libraries that make up
the cryptographic core of Matrix and Element. Together, these
vulnerabilities highlight the need for a systematic and formal
analysis of the cryptography in the Matrix standard.

I. INTRODUCTION
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(a) Alice’s device (left) sending Megolm channel information over
pairwise Olm channels.

Megolm.Encrypt( S, p)

(c)

(b) Alice’s device (left) sending payload data over the unidirectional
Megolm channel.
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1112. End-to-End Encryption

Matrix optionally supports end-to-end encryption, allowing
rooms to be created whose conversation contents are not
decryptable or interceptable on any of the participating
homeservers.

11.12.1. Key Distribution

11.12.1.3 Device keys
Encryption and Authentication in Matrix is based around public-

11.12.1.4 Uploading keys

11.12.1.5 Tracking the
device list for a user

11.12.1.6 Sending

encrypted attachments
11.12.1.6.1 Extensions to
m.room.message
msgtypes

key cryptography. The Matrix protocol provides a basic
mechanism for exchange of public keys, though an out-of-band
channel is required to exchange fingerprints between users to
build a web of trust.

11.12.1.1. Overview

1. Bob publishes the public keys and supported algorithms

for his device. This may include long-term identity keys,

11.12.1.7 Claiming one-time e —

keys

11.12.2 Device verification e +

| Bob's HS | | Bob's Device |

11.12.2.1 Key verification
framework

11.12.2.2 Short
Authentication Strina
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# Megolm group ratchet
An AES-based cryptographic ratchet intended for group communications.
## Background

The Megolm ratchet is intended for encrypted messaging applications where there
may be a large number of recipients of each message, thus precluding the use of
peer—to-peer encryption systems such as [0lm]l[].

It also allows a recipient to decrypt received messages multiple times. For
instance, in client/server applications, a copy of the ciphertext can be stored
on the (untrusted) server, while the client need only store the session keys.

## Overview

Each participant in a conversation uses their own outbound session for
encrypting messages. A session consists of a ratchet and an [Ed25519][] keypair.

Secrecy is provided by the ratchet, which can be wound forwards but not
backwards, and is used to derive a distinct message key for each message.

Authenticity is provided via Ed25519 signatures.

The value of the ratchet, and the public part of the Ed25519 key, are shared
with other participants in the conversation via secure peer-to-peer

channels. Provided that peer-to-peer channel provides authenticity of the
messages to the participants and deniability of the messages to third parties,
the Megolm session will inherit those properties.

## The Megolm ratchet algorithm
The Megolm ratchet $°R_i'$ consists of four parts, $R_{i,j}'$ for
$°j \in {0,1,2,3}"%. The length of each part depends on the hash function

in use (256 bits for this version of Megolm).

The ratchet is initialised with cryptographically-secure random data, and
advanced as follows:

00 2

Client-Server API | Matrix Speci X -+

“ C O B8 https://spec.matrix.org/unstable/client-server-api/#end-to-end-encryption B s X In

[matrix] specification — unstable version

11.11.1 Client behaviour

11.11.2 Security
considerations

1112 End-to-End Encryption
11.12.1 Key Distribution
11.12.1.1 Overview
11.12.1.2 Key algorithms
11.12.1.3 Device keys
11.12.1.4 Uploading keys

11.12.1.5 Tracking the
device list for a user

11.12.1.6 Sending
encrypted attachments

11.12.1.6.1 Extensions to
m.room.message
msgtypes

11.12.1.7 Claiming one-time
keys
1112.2 Device verification

11.12.2.1 Key verification
framework

11.12.2.2 Short
Authentication Strina

Foundation

11.12. End-to-End Encryption

Matrix optionally supports end-to-end encryption, allowing
rooms to be created whose conversation contents are not
decryptable or interceptable on any of the participating
homeservers.

11.12.1. Key Distribution

Encryption and Authentication in Matrix is based around public-
key cryptography. The Matrix protocol provides a basic
mechanism for exchange of public keys, though an out-of-band
channel is required to exchange fingerprints between users to
build a web of trust.

11.12.1.1. Overview

1. Bob publishes the public keys and supported algorithms
for his device. This may include long-term identity keys,
and/or one-time keys.

| Bob's HS |

| Bob's Device
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An AES-based cryptographic ratchet intended for group communications.
## Background
The Megolm ratchet is intended for encrypted messaging applications where there

may be a large number of recipients of each message, thus precluding the use of
peer—-to-peer encryption systems such as [0lm][1.

Tt also allows a recipient to decrypt receive @ = @ @ W gitlabmatrix.org/matrix-orgfoln X+ e
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## Overview
# 0lm: A Cryptographic Ratchet
Each participant in a conversation uses their

encrypting messages. A session consists of a An implementation of the double cryptographic ratchet described by

https://whispersystems.org/docs/specifications/doubleratchet/.
Secrecy is provided by the ratchet, which can )
backwards, and is used to derive a distinct n ## Notation

Authenticity is provided via Ed25519 signatur This document uses $ \parallel'$ to represent string concatenation. When
$"\parallel'$ appears on the right hand side of an $'="% it means that

The value of the ratchet, and the public part the inputs are concatenated. When $'\parallel'$ appears on the left hand

with other participants in the conversation v side of an $°="$ it means that the output is split.

channels. Provided that peer-to-peer channel

messages to the participants and deniability When this document uses $ \operatorname{ECDH}\left(K_A,K_B\right)'$ it means

the Megolm session will inherit those propert that each party computes a Diffie-Hellman agreement using their private key

and the remote party's public key.

So party $°A'$ computes $ \operatorname{ECDH}\1left(K_B~{public},K_A~{private}

\right)"$

The Megolm ratchet $ R_i‘'$ consists of four p and party $°B'$ computes $ \operatorname{ECDH}\left(K_A~{public},K_B~{private}

$'j \in {0,1,2,3} $. The length of each part \right)’s.

in use (256 bits for this version of Megolm).

## The Megolm ratchet algorithm

Where this document uses $ \operatorname{HKDF}\left(salt,IKM,info,L\right)"$ it
The ratchet is initialised with cryptographic refers to the [HMAC-based key derivation function][] with a salt value of
advanced as follows: $"salt"$, input key material of $ IKM'$, context string $ info'$,
and output keying material length of $'L'$ bytes.

## The O0lm Algorithm
### Initial setup

The setup takes four [Curve25519][] inputs: Identity keys for Alice and Bob,
$°I_A"$ and $°I_B"$, and one-time keys for Alice and Bob,

$"E_A"$ and $°E_B'$. A shared secret, $°S°$, is generated using

[Triple Diffie-Hellman]l[]. The initial 256 bit root key, $R_8°%, and 256
bit chain key, $°C_{0,0} %, are derived from the shared secret using an
HMAC-based Key Derivation Function using [SHA-256][] as the hash function

( [HKDF-SHA-256] []1) with default salt and " *"OLM_ROOT"'‘ as the info.
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11.12. End-to-End Encryption

Matrix optionally supports end-to-end encryption, allowing
rooms to be created whose conversation contents are not
decryptable or interceptable on any of the participating
homeservers.

11.12.1. Key Distribution

Encryption and Authentication in Matrix is based around public-
key cryptography. The Matrix protocol provides a basic
mechanism for exchange of public keys, though an out-of-band
channel is required to exchange fingerprints between users to
build a web of trust.

11.12.1.1. Overview

1. Bob publishes the public keys and supported algorithms
for his device. This may include long-term identity keys,
and/or one-time keys.

| Bob's HS |
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11.12.1.1 Overview

An AES-based cryptographic ratchet intended for group communications.
## Background
The Megolm ratchet is intended for encrypted messaging applications where there

may be a large number of recipients of each message, thus precluding the use of
peer—-to-peer encryption systems such as [0lm][1.

11.12.1.2 Key algorithms
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## Overview
# 0lm: A Cryptographic Ratchet
Each participant in a conversation uses their
encrypting messages. A session consists of a An implementation of the double cryptographic ratchet described by
https://whispersystems.org/docs/specifications/doubleratchet/.
Secrecy is provided by the ratchet, which can )
backwards, and is used to derive a distinct n ## Notation

Authenticity is provided via Ed25519 signatur This document uses $ \parallel'$ to represent string concatenation. When
$"\parallel'$ appears on the right hand side of an $'="% it means that
The value of the ratchet, and the public part the inputs are concatenated. When $'\parallel'$ appears on the left hand
with other participants in the conversation v side of an $°="$ it means that the output is split.
channels. Provided that peer-to-peer channel
messages to the participants and deniability When this document uses $ \operatorname{ECDH}\left(K_A,K_B\right)'$ it means
the Megolm session will inherit those propert that each party computes a Diffie-Hellman agreement using their private key
and the remote party's public key.
So party $°A'$ computes $ \operatorname{ECDH}\left(K_B~{public},K_A~{private}
\right)"$
The Megolm ratchet $ R_i‘'$ consists of four p and party $°B'$ computes $ \operatorname{ECDH}\left(K_A~{public},K_B~{private}
$'j \in {0,1,2,3} $. The length of each part \right)’s.
in use (256 bits for this version of Megolm).
Where this document uses $ \operatorname{HKDF}\left(salt,IKM,info,L\right)"$ it
The ratchet is initialised with cryptographic refers to the [HMAC-based key derivation function][] with a salt value of
advanced as follows: $"salt"$, input key material of $ IKM'$, context string $ info'$,
and output keying material length of $'L'$ bytes.

## The Megolm ratchet algorithm

## The Olm Algorithm
### Initial setup

The setup takes four [Curve25519][] inputs: Identity keys for Alice and Bob,
$°I_A"%$ and $°I_B'$, and one-time keys for Alice and Bob,

$"E_A"$ and $°E_B'$. A shared secret, $°S°$, is generated using

[Triple Diffie-Hellman]l[]. The initial 256 bit root key, $R_8°%, and 256
bit chain key, $°C_{0,0} %, are derived from the shared secret using an
HMAC-based Key Derivation Function using [SHA-256][] as the hash function

( [HKDF-SHA-256] []1) with default salt and " *"OLM_ROOT"'‘ as the info.
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11.12. End-to-End Encryption

Matrix optionally supports end-to-end encryption, allowing
rooms to be created whose conversation contents are not
decryptable or interceptable on any of the participating

homeservers.
[ ] [ ] & [I'H] Matrix.org - End-to-End Encryp X + ~
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Encryption and Authentication in Matrix is b
key cryptography. The Matrix protocol prov
mechanism for exchange of public keys, thq
channel is required to exchange fingerprints
build a web of trust.
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Implementing End-to-End Encryption in
Matrix clients

This guide is intended for authors of Matrix clients who wish to add support for end-to-end

11.12.1.1. Overview

1. Bob publishes the public keys and sup
for his device. This may include long-t
and/or one-time keys.

encryption. It is highly recommended that readers be familiar with the Matrix protocol and the

use of access tokens before proceeding.

The libolm library

| Bob's HS | | Bob's Device | End-to-end encryption in Matrix is based on the Olm and Megolm cryptographic ratchets. The

/keys/upload

recommended starting point for any client authors is with the libolm library, which contains
implementations of all of the cryptographic primitives required. The library itself is written in
C/C++, but is architected in a way which makes it easy to write wrappers for higher-level

languages.

Devices

We have a particular meaning for "device". As a user, | might have several devices (a desktop
client, some web browsers, an Android device, an iPhone, etc). When | first use a client, it
should register itself as a new device. If | log out and log in again as a different user, the client
must register as a new device. Critically, the client must create a new set of keys (see below)

for each "device".

The longevity of devices will depend on the client. In the web client, we create a new device
every single time you log in. In a mobile client, it might be acceptable to reuse the device if a
login session expires, provided the user is the same. Never share keys between different

users.
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## Overview 9
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and the remote part @ confirm 24
## The Megolm ratchet algorithm So party $'A"$ comf © mismatch 25 import { VerificationBase as Base, SwitchStartEventError, VerificationEw
\right)"$ 26  import {
The Megolm ratchet $"R_i'$ consists of four p and party $'B°$ con sas 27 errorFactory,
$'j \in {0,1,2,3} $. The length of each part \right)’s. 28 newInvalidMessageError,
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Where this document 30 newUnknownMethodError,
The ratchet is initialised with cryptographic refers to the [HMAC( i3 KEY_AGREEMENT_SET 31 newUserCancelledError,
advanced as follows: $'salt’s, input key o \iac ioT 32} from './Error';
and output keying n - 33 import { logger } from '../../logger’';
2 MAC_SET 34 import { IContent, MatrixEvent } from "../../models/event";
## The Olm Algoritt 35
1 SAS 36 const START_TYPE = "m.key.verification.start";
### Initial setup 37
© NAME 38 const EVENTS = [
The setup takes fou e 39 "m.key.verification.accept",

$'I_A'$ and $°I_B'$, and one-time keys for Alice and Bob,

$°E_A"$ and $°E_B'$. A shared secret, $°S°$, is generated using

[Triple Diffie-Hellman]l[]. The initial 256 bit root key, $°R_8°%, and 256
bit chain key, $°C_{0,0} %, are derived from the shared secret using an
HMAC-based Key Derivation Function using [SHA-256][] as the hash function
( [HKDF-SHA-256] []1) with default salt and " *"OLM_ROOT"'‘ as the info.
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Implementing End-to-End Encryption in
Matrix clients

This guide is intended for authors of Matrix clients who wish to add support for end-to-end
encryption. It is highly recommended that readers be familiar with the Matrix protocol and the

use of access tokens before proceeding.

The libolm library

End-to-end encryption in Matrix is based on the Olm and Megolm cryptographic ratchets. The
recommended starting point for any client authors is with the libolm library, which contains
implementations of all of the cryptographic primitives required. The library itself is written in
C/C++, but is architected in a way which makes it easy to write wrappers for higher-level

languages.

Devices

We have a particular meaning for "device". As a user, | might have several devices (a desktop
client, some web browsers, an Android device, an iPhone, etc). When | first use a client, it
should register itself as a new device. If | log out and log in again as a different user, the client
must register as a new device. Critically, the client must create a new set of keys (see below)

for each "device".

The longevity of devices will depend on the client. In the web client, we create a new device
every single time you log in. In a mobile client, it might be acceptable to reuse the device if a
login session expires, provided the user is the same. Never share keys between different

users.
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key shared between a Key Backups Protocol

user's devices.




Secure Secret
Storage & Sharing

Backup, recover and share
user-level secrets.

Secret Storage:
e Encrypt secrets and
store on homeserver.
e Shared symmetric key
(may be password-
derived).

Secret Sharing:
e Use Olm to share
secrets to newly
verified devices.

Secure Secret

Storage & Sharing

Cross-signing

Framework

|

Olm |—

Megolm
Key Backups

"

l

Megolm

I

—

N

Verification
Framework

Key Request
Protocol




Secure Secret
Storage & Sharing

Secure Secret Cross-signing
Backup, recover and share Storage & Sharing Framework
user-level secrets. \ l r\
Secret Storage: aim \éerificatioE
e Encrypt secrets and ramewor
store on homeserver. l
e Shared symmetric key
(may be password- Megolm
derived). Root secret for
a user's account / \‘
Secret Sharing: Megolm Key Request
Key Backups Protocol

e Use Olm to share
secrets to newly

verified devices.




Modelling Matrix
& Finding Attacks

Secure Secret Cross-signing
: —
Storage & Sharing Framework

We found many of these
attacks while formalising \ l \

e

each sub-protocol as part Verification
of the modelling work. oim Framework
Megolm
Megolm Key Request

Key Backups Protocol




Cross-signing

e Cryptographic
Secure Secret Cross-signing

identities for users —
. : Storage & Sharing Framework
and their devices.

o gpo . Verification
& Verification Oom —)
e Self-verification l
Users sign their own
Megolm

devices to indicate

trust. / \(

o Megolm Key Request
e Cross-signing Key Backups Protocol
Users sign each

other's identities.




Cross-signing and Verification

&

SPR,

Ss /?4

(dPRy 1, 1PR4 1)

(dpl?A,m ipl?A,n)



Cross-signing and Verification
Device-to-device verification

Verified Unverified
(dPRy 1, 1PRy 1)

(dpl?A,m ipl?A,n)



Cross-signing and Verification

Device-to-device verification

&

SPR,

SS /?4

Verified Verified
(dPRy 1, 1PRy 1)

(dPRa s 1PRA 1)



Cross-signing and Verification

< 2 2 2
2 A )
S z g 5
SPR, UPR UpRg SPRg
(\-\R' \Q_Q)
3 Ry & %
$‘—7 “m
(dpl?A,% ipl?Aﬂ) “‘ (dpl?B,% ipl?Bﬂ) “
= ~/

(dpRa s IPRA 1) T (dPRg, m s 1PRE m)



Cross-signing and Verification
User-to-user verification

MpR, mpRg
| N |
~ 5%, \)5‘({& -
~
gt % ~ - - go ’—a
S z 2 & 3
”~ ~
”~ ~
”~ ~
”~ ~
SPR, UPR UpRg SPRg
< "\ X
& ‘j{};/s S y!
% 5
(dpRa 15 1PRA 1) (dpkg 1, 1PRg 1)
= ~/



Cross-signing and Verification

User-to-user verification




Cross-signing and Verification
Verifying device identities




Cross-signing and Verification
Verifying device identities




Cross-signing and Verification
Verifying device identities

(dpl?A,na ipl?A,n) T (dp/?B,mv ipl?B,m)



Cross-signing and Verification
Verifying device identities

SPRa

<@
g %
.~
. . P
(dpRa 15 1PRA 1) (dpRg 1, 1PRg 1) :
o Y
(AdPRa,ns 1PRA 1) :

(dpkg,m>iPRp.m)



Cross-signing and Verification
Short Authentication String Protocol




Cross-signing and Verification

Short Authentication String Protocol

A

1. Setup tamperproof channel
with known identities




Cross-signing and Verification

Short Authentication String Protocol

A

t < {0,1}8%% start(t)




Cross-signing and Verification

Short Authentication String Protocol

AR W, -

t < {0,1}8%3 start(t)

S/?B, p/?B < X25519.KG€H(1”)
accept(t,com) ' com < SHA-256(pkg)

SRa, PRa < X25519.KGen(1™) key(t, pRa)

key(t7 p/?B)

yi
N

(abort if  SHA-256(pkg) # com)



Cross-signing and Verification

Short Authentication String Protocol

\ . :

t < {0,1}8%3 start(t)

S/?B, DI?B < X25519.KG€H(1”)
accept(t,com) com < SHA-256(pkg)

A)

SRa, PRa < X25519.KGen(1™) key(t, pRa)

~

I(ey(t7p/?5)
(abort if  SHA-256(pkg) # com) )
f?(—S/?AXp/?B f?%S/?BXDf?A
C < "MATRIX _KEY_VERIFICATION_SAS" C < "MATRIX _KEY_VERIFICATION_SAS"
|A[| Daq || pRa || B || Dga || PR || t |A[| Daq || pRa || B || D || PR || t

sasy < HKDF-SHA-256(0, Rk, ¢, 32) sasg < HKDF-SHA-256(0, k, ¢, 32)



Cross-signing and Verification

Short Authentication String Protocol

t < {0,1}8%% start(t)

\
4

S/?B, DI?B < X25519.KG€H(1”)
accept(t,com) com < SHA-256(pkg)

A)

SRa, PRa < X25519.KGen(1™) key(t, pRa)

~

I(ey(t7p/?5)
(abort if  SHA-256(pkg) # com) )
f?(—S/?AXp/?B f?%S/?BXDf?A
C < "MATRIX _KEY_VERIFICATION_SAS" C < "MATRIX _KEY_VERIFICATION_SAS"
Al Daa [l pRa |l B Dei |l pRe || t Al Daa [l pRa |l Bl Dei |l pRe || t
sasy < HKDF-SHA-256(0, Rk, ¢, 32) sasg < HKDF-SHA-256(0, k, ¢, 32)

Alice and Bob compare sasy
and sasg out-of-band.

(abort if sas, # sasg)



Cross-signing and Verification

Short Authentication String Protocol

L—LQ

Alice and Bob may use k to communicate securely through the homeserver



Cross-signing and Verification

Short Authentication String Protocol

Please sign
my keys

Keys:

\
\\\; 1. device id: dpk

2. mpk: mpk

2. Send keys for signing



Cross-signing and Verification

Short Authentication String Protocol

Keys:
1. device id: dpk
2. mpk: mpk

3. Sign keys




Cross-signing and Verification

Short Authentication String Protocol

— For device-to-device —
M verification ’
I

Keys: '

\
\\N; 1. device id: dpk

2. mpk: mpk

For user-to-user

verification
3. Sign keys



Cross-signing and Verification

Short Authentication String Protocol

ece @

Client-Server AP | Matrix Speci X

+

/R G O E‘, https:(/spec.matrix.org/unstable/client-server-apif#cross-signing E =a 'if:?

[matrix] specification — unstable version

11.12.2.2.6 SAS method:
emoji

11.12.2.3 Cross-signing
11.12.2.3.1 Key and
signature security

11.12.2.4 QR codes
11.12.2.4.1 QR code
format

11.12.2.4.2 Verification
messages specific to
QR codes

11.12.3 Sharing keys
between devices
11.12.3.1 Key requests
11.12.3.2 Server-side key
backups
11.12.3.2.1 Recovery key
11.12.3.2.2 Backup
algorithm:

m.megolm_backup.vl.curn
aes-sha2

11.12.3.3 Key exports

11.12.3.3.1 Key export
format

11.12.4 Messaging
Algorithms

L % 2 9 O =

Foundation FAQs Blog

| — | | —t |

+ + L

Verification methods can be used to verify a user’s master key by using the master
public key, encoded using unpadded base64, as the device ID, and treating it as a
normal device. For example, if Alice and Bob verify each other using SAS, Alice’s
m.key.verification.mac message to Bob may include
"ed25519:alices+master+public+key": "alices+master+public+key" in the mac
property. Servers therefore must ensure that device IDs will not collide with cross-
signing public keys.

The cross-signing private keys can be stored on the server or shared with other
devices using the Secrets module. When doing so, the master, user-signing, and
self-signing keys are identified using the names m.cross_signing.master ,
m.cross_signing.user_signing , and m.cross_signing.self_signing , respectively,
and the keys are base64-encoded before being encrypted.

11.12.2.3.1. Key and signature security

A user’s master key could allow an attacker to impersonate that user to other users,
or other users to that user. Thus clients must ensure that the private part of the
master key is treated securely. If clients do not have a secure means of storing the
master key (such as a secret storage system provided by the operating system),
then clients must not store the private part.

If a user’s client sees that any other user has changed their master key, that client
must notify the user about the change before allowing communication between the
users to continue.

Since device key IDs ( ed25519:DEVICE_ID ) and cross-signing key IDs
( ed25519:PUBLIC_KEY ) occupy the same namespace, clients must ensure that they

e
T




Cross-signing and Verification

Short Authentication String Protocol

‘3

. device id: dpk
2. mpk: mpk

—

. DevicelDis
Device ID and mpk controlled by the
share the same homeserver

namespace



User/Device
Confusionin

Out-of-Band
Verification

Aim: Trick clients into
signing an attacker
controlled identity.

Keys .

NG

2. mpk: mpk

Bt

device id: dpk

—

Device ID and mpk

share the same
namespace

DevicelDis
controlled by the
homeserver




User/Device
Confusionin

Out-of-Band
Verification

Aim: Trick clients into
signing an attacker
controlled identity.

If we set Alice's device
identifier to a valid cross-
signing key,

\ Keys : “
\\~> 1. device id: dpk \,)7

2. mpk: mpk

—

. DevicelDis
Device ID and mpk controlled by the
share the same homeserver

namespace




User/Device
Confusionin

Out-of-Band
Verification

Aim: Trick clients into
signing an attacker
controlled identity.

If we set Alice's device
identifier to a valid cross-
signing key, can we trick
Bob into signing it as if it
were Alice’'s?

Keys:

1. device id: dpk j

2. mpk: mpk

1. Construct a string mpk_adv
as a valid Device ID and
user cross-signing key (mpk)

ﬂ
@




User/Device
Confusionin

Out-of-Band
Verification

Device ID/cross-
signing key set by

the homeserver !
\\~> 1. mpk_adv: dpk \,)7

2. mpk: mpk

Aim: Trick clients into
signing an attacker
controlled identity.

If we set Alice's device
identifier to a valid cross-
signing key, can we trick

Bob into signing it as If It 2. Assign mpk_adv to (A,1) as
were Alice's? its device identifier




User/Device
Confusionin

Out-of-Band
Verification

Aim: Trick clients into
signing an attacker
controlled identity.

If we set Alice's device
identifier to a valid cross-
signing key, can we trick
Bob into signing it as if it
were Alice’'s?

Bob expects Alice's
master public key to be
mpk_adv not mpk

v
-
L

1. mpk_adv: dpk
2. mpk: mpk

3. Advertise Alice's master
public key as mpk_adv to
everyone but Alice




User/Device
Confusionin

Out-of-Band
Verification

Aim: Trick clients into
signing an attacker
controlled identity.

If we set Alice's device
identifier to a valid cross-
signing key, can we trick
Bob into signing it as if it
were Alice’'s?

Keys:

1. mpk_adv: dpk j

2. mpk: mpk

4. Alice's client asks Bob
to sigh mpk_adv!

ﬂ
@




User/Device
Confusionin

Out-of-Band
Verification

Aim: Trick clients into
signing an attacker
controlled identity.

If we set Alice's device
identifier to a valid cross-
signing key, can we trick
Bob into signing it as if it
were Alice’'s?

(> Active MITM

(dpl?adv,h ipl?advﬂ) .
J .
(dpl?adv,nv ’pl?adv,n)

(dpRg 1 IPRp 1)

(dp/?B,mv ipl?B,m)




Modelling Matrix
& Finding Attacks

Secure Secret Cross-signing
: —
Storage & Sharing Framework

Verification

Framework

Megolm Key Request
Key Backups Protocol




Megolm

Secure Secret Cross-signing

Storage & Sharing Framework

e Secure one-to-many
channel.

e Symmetric ratchet for \ l \

forward security. olm 5 \éi:zs\/tgig

e Session keys are l
distributed over OIm. \
.
e Fach sender maintains
their own Megolm / \(

session. Megolm Key Request

Key Backups Protocol
(q Compose together

to form group chat.




Megolm

1. Alice initialises and distributes session.

A A
(Sgsk> Sk

Megolm.Init()

[+ 0

R « {0,1}102

(gsk, gpk) + Ed25519.KGen(1")

ver < 0x03

omg < Ed25519.Sign(gsk, (ver, i, R, gpk))
Sysk < (ver, 1, R, gsk, gpR) ﬂ

Sypr < (ver,i,R,gpR) ‘




Megolm

1. Alice initialises and distributes session.

(S5 Spors Tmg) +— Megolm.Init()

(7S Cmg,c) < OlM.ENc(xS, &4, || ohg) \

Cmg,C




Megolm

2. Bob and Claire recieve and verify Alice's session.

(S5 Spors Tmg) +— Megolm.Init()

(751> Cmg,8) <= Olm.Enc(mgy, &7 1 [l o)

(ngm, Cmg,c) < Olm.EnC(ﬂ‘glm, 62[3,? | aﬁng) \

A

; l (Toims Spor | o)+ Olm.Dec(m} s Cmg,5)

Cmg,C




Megolm

3. Bob and Claire generate and distribute their own sessions.

Megolm Sessions Megolm Sessions

(6351’87

B Gép[g Umg) ﬂ) (695[?/47 gpk? Umg)

Megolm Sessions

gsk’
(A, GAp/@ UrA}]g)

(B, GSD/?’ amg)




Megolm

4. Alice sends a Megolm message to Bob and Claire.

Megolm Sessions Megolm Sessions
(635’?5’ 63%’ ong) ﬂ) (6gsfe’ gp/w Ormg)
(B 6%[3/?7 Omg) \ : | . (A 6%;3/?7 Omg)
(C Ggp[Q? ng) - . (C 69/3[?? Umg)
<7 Ch
(S)sks Cas) < Megolm.Encrypt(&ygy,, ma,1)

Megolm.Encrypt(Sysp, M)

(ver,i,R,gsk, gpR) < Ggsp

(I, R), (Re || R || Riv) < MegolmRatchet.Next((i,R)) <
C <— AES-CBC.Encrypt(Rj,, Re, m)
T < HMAC(Ry,, (ver,i,¢))
o < DS.Sign(gsk, (ver,i,c, 7)) é Megolm Sessions
¢’ «+ (ver,i,c (S5t Sgon: Ome)
7 ) 77-7 O-) A A

. /? /? (A GQp/wO-mg)

Sgsk < (ver,i,R,gsk, gpR) (B, 6gp,?,amg)

return (Sygp, ')



Megolm

5. Bob and Claire decrypt and verify Alice's message.

Megolm Sessions Megolm Sessions
(6251?’ Gépfe’amg) Q ﬂ) (6951?’ gpfe’ Oimg)
(B, GSpk,amg) a‘ (A, 6gpk’0mg)
(C, 8L o 05ig) \ (NS
“,; Ch
(&)spes Ca1) +— Megolm.Encrypt(&ygy,, Ma 1) (&0, Ma1) < Megolm.Decrypt(&p ., ca1)

Megolm.Decrypt(Sgypk, )

(ver,i,R,gpR) < Sgypr

(ver’,i",c',1,0) < C S

assert DS.Verify(gpk, o, (ver,i’,c’, 7))

do (i,R), kR « MegolmRatchet.Next((i,R)) until i =/’

(Re || Rp || Riy) < R v Megolm Sessions

assert 7 — HMAC(ky, (ver, i, ') “q Efgg/; 65557 ‘; ne)

» O
m <« AES-CBC.Decrypt(Ri, ke, ') (5. G%ZZvai)

Sgypr < (ver,i,R,gpR) -

.Muq) < Megolm.Decrypt(&8 . c
return (Sgpr, M) gok MA1) g YPUS s Cat)
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Key Request
Protocol

Secure Secret Cross-signing

Storage & Sharing Framework

Request-response

protocol. \ l \

Verification
Framework

request and share keys

between each other. l
Responding device
must ensure % N

requesting device is
entitled to the keys.

Allows devices to Olm ——

Megolm Key Request
Key Backups Protocol

Keys are shared over
Olm.




Key Request Protocol

1. Alice’'s device receives a ciphertext it can't decrypt.

| don't have
the keys to
decrypt this...

\
\ \ \
N \ N
\ \ AN
\ N\ \ N\
AN \ \
\ N N

Megolm.Encrypt(Syse, p)

Cannot decrypt ’
(missing &)



Key Request Protocol

2. Alice’s client requests a copy of the decryption keys.

Can | have a copy
of this session?

Megolm.Encrypt(Syse, p)

Cannot decrypt ’
(missing Gypr)  key_request(gpk)
key_request(gpk) ' key_request(gpk)

AN
\



Key Request Protocol

3. Another device (possibly) shares their copy of the keys.

Let me check...
yeah, here you go!

\
\ \ \
\ \ N
\ \ AN
\ N\ N\ N\
AN \ \
\ > > A 2

Megolm.Encrypt(Syse, p)

Cannot decrypt ’
(missing Gypr)  key_request(gpk)
key_request(gpk) ' key_request(gpk)

AN
\

1. Da 1 verified
as Alice’s device?

Olm.Enc(fwd_key(Dg1,gpR, Sypr)) 2. Shared &y
with Da 1 before?

AN



Key Request Protocol

3. Another device (possibly) shares their copy of the keys.

Let me check...
yeah, here you go!

\
\ \ \
\. \ \.
\ \ AN
\ O\ N\ N
AN AN \
A\ > = A 2

Megolm.Encrypt(Syse, p)

Cannot decrypt ’
(missing Gypr)  key_request(gpk)
key_request(gpk) ' key_request(gpk)

< ﬂ ' 1. DA,1 verified
a‘ as Alice’s device?
Olm.Enc(fwd_key(Dg1,gpR, Sypr)) 2. Shared Gy,

AN

with Da 1 before?



Key Request Protocol
4. (Possibly) accept shared keys then decrypt message.

(A1) is trusting
(A,2) to set the
inbound session
for other senders
(e.g. Bob).

SN N\
\ O\
X\ N
NN\

Megolm.Encrypt(Syse, p)

Cannot decrypt ’

(missing &)

Megolm Sessions

(B, & gpps Timgs FIID)

key_request(gpR)

\

key_request(gpk) ' key_request(gpk)

AN

ﬂ
@

Olm.Enc(fwd_key(Dg1,gpR, Sypr))

"1, Da 1 verified
as Alice’s device?

AN

with Da 1 before?



Key Request Protocol

4. (Possibly) accept shared keys then decrypt message.

@ * @ Security Testing Element | test { X + @

<« C O () &2 localhost:8080/#/room/!blrgjWHyeDpRMRJcmY:localhost:8481 e N » =

o ~

@ o @ @ test forwarded room key warnings
e
- Q

You created this room. This is the start of test forwarded room key warnings
A pic 10 help people Know what it I1s about
R
v & Invite to this room
e
o ICH |
w m d | | |
i+ 9 @ © <«
e ® Hey! C]
. k
' o a
@)




Key Request Protocol

4. (Possibly) accept shared keys then decrypt message.

&) ® S Security Testing Element | test [ X + @

o Cr O [ = localhost:8080/#/room/!blrgjWHyeDpRMRJcmY:localhost:8481 = I »

@ o o @ test forwarded room key warnings
. -

=
s Q You created this room. This is the start of test forwarded room key warnings.
Add a topic to help people know what it is about
12
i X
v & Invite to this room
e
0
nd
© © Z
The authenticity of this encrypted ®

message can't be guaranteed on

this device.




Impersonation
through key sharing

™ L2

Megolm.Encrypt(Sgysk, P)

Cannot decrypt ’
(missing &,,,)  key_request(gpk)
key_request(gpk) ' key_request(gpk)

AN

"1, Da 1 verified

)
f@‘ as Alice’s device?
Olm.Enc(fwd_key(Ds1,apR, Sgpr)) 2. Shared Gy,

with Da 1 before?

AN




Impersonation
through key sharing

e Missing checks on the
receiving side.

. ™ ¢

Megolm.Encrypt(Sgysk, P)

Cannot decrypt ’
(missing &,,,)  key_request(gpk)
key_request(gpk) '  key_request(gpk)

AN

"1, Da verified

)
f@‘ as Alice’s device?
/ Olm.Enc(fwd_key(Dg1,gpR, Sypr)) 2. Shared Gy,
Missing checks: ) with Da; before?

1. DA,2 verified
as Alice’s device?
2. Did | request

gpR?




Impersonation
through key sharing

e Missing checks on the
receiving side.

e Allows attackers to
inject an inbound
Megolm session as if it
were someone else’s.

Ca Impersonation

Megolm Sessions

(B, S gpp> Tmg, FIID)

ra.
&

Olm.Enc(fwd_key(Dg1,gpR, G4y ))




Impersonation
through key sharing

e Missing checks on the
receiving side.

e Allows attackers to
inject an inbound
Megolm session as if it
were someone else’s.

Cq Impersonation

The authenticity of this encrypted
message can't be guaranteed on
this device.

Megolm Sessions

(B,&

B
g

pks Tmgs FWD)

ra.
&

Olm.Enc(fwd_key(Dg1,gpR, G4y ))




Modelling Olm's
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messages from different
protocols and purposes?

Secure Secret Cross-signing

Storage & Sharing Framework

Ny

Megolm
Key Backups

Verification
Olm
Framework

Megom\

Key Request

Protocol




Modelling Olm's
ComPOSition @ o @ “ Client-Server API | Matrix Speci X + v

H [ C O 8 https://spec.matrix.org/unstable/client-server-api/#events-8 as Y m B ® 5 =
{matrix] specification — unstable version Foundation FAQs Blog
Olm and Megolm are aes-sha2
generally interchangable I ¥ m.room.encrypted
exports
In the specification. 1112.3.31 Key | , |
export format This event type is used when sending encrypted events. It can be

used either within a room (in which case it will have all of the

11.12.4 Messaging o .
normal properties in Room events), or as a to-device event.

Algorithms
11.12.4.1 Messaging
Algorithm Names Event type: Message event
11.12.42
m.olm.v1.curve25519
aes-sha2 Content
11.12.4.2.1
Recovering from Name Type Description
undecryptable
RESSERE=s algorithm enum Required: The encryption algorithm
11.12.4.3 used to encrypt this event. The value
m.megolm.v1.aes- of this field determines which other
sha2 properties will be present.
11.12.5 Protocol One of:
definitions [m.olm.v1.curve25519-aes-
1112.51 Events sha2, m.megolm.vl.aes-sha2] .
11.12.5.2 Key
IERAEEMENE £ ciphertext string|{string: Required: The encrypted content of

1112.5.3 Extensions CiphertextInfo} the event. Either the encrypted



Modelling Olm's
ComPOSition o © @ “ Client-Server AP | Matrix Speci X -+ v

I & C O B https://spec.matrix.org/unstable/client-server-apif#mforwarded_roor E 3a as ® 55 =

[matrix] specification — unstable version Foundation FAQs  Blog
Olm and Megolm are
generally interchangable 1112.5 Protocol v m. forwarded_room_key

=R L=

. th f t definitions
In the specification.
1112.5.1 Events This event type is used to forward keys for end-to-end
11.12.5.2 Key encryption. It is encrypted as an m.room.encrypted event
. . management API using Olm, then sent as a to-device event.
With some special 1112.5.3

Extensions to
/sync

Event type: Message event

casing.

11.12.6 Reporting
that decryption
keys are withheld Content

1113 Secrets

Name Type Description
11.13.1 Storage
111311 Key algorithm string Required: The
storage encryption algorithm
11.13.1.2 Secret the key in this event
storage is to be used with.
11.13.1.21
m.secret_storage. forwarding_curve25519_key_chain [string] Required: Chain of
hmac-sha2 Curve25519 keys. It
11.13.1.2.2 Key starts out empty, bul

representation each time the key is

r =



Modelling Olm's
Composition

How to differentiate
messages from different
protocols and purposes?

Matrix.Decrypt(stme, type, alg, c)

/| Decrypt ciphertext
If (type = m.room.encrypted) A (alg = megolm) then
/| Select correct Megolm session for decryption
apks IPRsng, type, m < Megolm.Decrypt(&gp, C)
elseif (type = m.room.encrypted) A (alg = olm) then

/| select correct Olm session for decryption

Stoim, IPDR<pg, type, m <— Olm.Dec(Stym, C)



Modelling Olm's
Composition

How to differentiate
messages from different
protocols and purposes?

Matrix.Decrypt(stme, type, alg, c)

/| Decrypt ciphertext
If (type = m.room.encrypted) A (alg = megolm) then

/| Select correct Megolm session for decryption

/
gpRk»

elseif (type = m.room.encrypted) A (alg = olm) then

IPRgng, type, m <— Megolm.Decrypt(Sgpp, C)

/| Select correct Olm session for decryption
Stoim, IPR<pg, type, m <— Olm.Dec(Stym, C)
/| Handle plaintext
if (type = m.room.message) then
/| Handle room message
elseif (type = m.room_key) then
/| Handle initial Megolm session distribution

elseif (...) then

/| Handle other message types



Modelling Olm's
Composition

How to differentiate
messages from different
protocols and purposes?

Matrix.Decrypt(stme, type, alg, c)

/| Decrypt ciphertext
If (type = m.room.encrypted) A (alg = megolm) then

/| Select correct Megolm session for decryption

/
gpRk>

elseif (type = m.room.encrypted) A (alg = olm) then

IPRgng, type, m <— Megolm.Decrypt(Sgpp, €)

/| select correct Olm session for decryption
Stoim, IPDR<pg, type, m <— Olm.Dec(Stym, C)
/| Handle plaintext

if (type = m.room.message) then Determine if message

/| Handle room message was encrypted by

elseif (type = m.room_key) then yy checking if ipk_snd has

/| Handle initial Megolm session distribution been set.

elseif (...) then

/| Handle other message types



Modelling Olm's
Composition

How to differentiate
messages from different
protocols and purposes?

Matrix.Decrypt(stme, type, alg, c)

/| Decrypt ciphertext
If (type = m.room.encrypted) A (alg = megolm) then

/| Select correct Megolm session for decryption

/
gpRk»

elseif (type = m.room.encrypted) A (alg = olm) then

IPRsng, type, m <— Megolm.Decrypt(Sgpp, €)

/| Select correct Olm session for decryption
Stoim, IPR<pg, type, m <— Olm.Dec(Stym, C)
/| Handle plaintext
If (type = m.room.message) then
/| Handle room message
elseif (type = m.room_key) then

/| Handle initial Megolm session distribution < But never check
elseif (...) then which algorithm was

ion!
/| Handle other message types used for encryption!



Olm/Megolm
Protocol Confusion

Keys sent as part of
Megolm's initial key share
are fully trusted.

But they are sent over Olm.

Megolm Sessions

(B, S ks Tmg: FIID)

£y

Megolm Sessions

(B, Sk Tmg» FIID)

S

R

Megolm Sessions

(Sgs Sgprr Tme)




Olm/Megolm
Protocol Confusion

Megolm Sessions Megolm Sessions

Keys sent as part of ®. Sypkr Tings FIID)
Megolm's initial key share |

are fully trusted.

But they are sent over Olm.

(ngsk gpk O}Hg)

63;,? Sy Tmg) < Megolm.Init()

,Cmg,6+) <= Megolm.Encrypt(& ., &7, || ore)

)

Encrypt initial key
distribution with
Megolm not Oim.

Can we share a session key
over Megolm?

Cmg,B+

& Megolm Sessions

‘ (B GQD/? O'mg FWD)




Olm/Megolm
Protocol Confusion

Megolm Sessions

Keys sent as part of (B, S s Timg: FUID)
Megolm's initial key share :
are fully trusted.

But they are sent over Olm.

a Megolm Sessions

B B B
(Sgs» Sgpr: Tme)

(Sgprs Sopr Il mg) < Megolm.Decrypt(&, ., Cmg,5-)

Can we share a session key
over Megolm?

Cmg,B+

~

ﬂ Megolm Sessions

‘ (B, Sk Tmg» FIID)

(S5 S || o)  Megolm.Decrypt(&, ., Ca -)




Olm/Megolm
Protocol Confusion

Megolm Sessions

B B B
(GSst’GBka7O}ﬂg)
(GB* 68* O-an*

Megolm Sessions
(B,&% o0, FWD)

Keys sent as part of (B,gggzjaﬁg

Megolm's initial key share

are fully trusted.

But they are sent over OIm. mqs

gsk’ ~gpk>

Can we share a session key

over Megolm? Messages from
B* are not

marked as FWD.

Megolm Sessions
(Ba 6513/?7 UrBT1g7 FWD)

(87 65;;}37 Uan*g)




Olm/Megolm
Protocol Confusion

Megolm Sessions Megolm Sessions

(B, GW,amg, FWD)

(Ggsl?’ gpl?’ Omg)

Keys sent as part of

(B 6gpk70mg (Ggsk’6g;k’amg
Megolm's initial key share
are fully trusted.
But they are sent over Olm.
Can we share a session key
over Megolm? Messages from
B* are not
| . marked as FWD. Megolm Sessions
mpersonation a . 7 )

B
(87 GQEW Umg

The authentifiity ofgiiis encrypted
message can'tt " guaranteed on
this deVie.




Megolm Key
Backups

Secure Secret Cross-signing
Storage & Sharing Framework

e Asynchronous
alternative to Key
Request protocol.

Verification
Framework

Inbound Megolm
sessions are encrypted
and saved to the
homeserver.

Encrypt using a secret
key shared between a
user's devices.

Key Request
Key Backups Protocol




Megolm Key Backups
1. Setup

\

bsk, bpk + X25519.KGen(1")

auth_data(bpRk)

\
[4

auth_data(bpk) auth_data(bpR)

\

DA marks bpk as trusted since it has bsk ) " DA2 marks bpk as untrusted w/out bsk



Megolm Key Backups

1. Setup

\ !

bsk, bpk + X25519.KGen(1")

auth_data(bpR)

\
[4

auth_data(bpk) auth_data(bpR)

\

DA marks bpk as trusted since it has bsk ) " DA2 marks bpk as untrusted w/out bsk

D41 and D* share bsk using SSSS (or out-of-band)

D2 marks bpk as trusted since it has bsk



Megolm Key Backups
2. Backup

\

(epk,c,T)

(epk,c, 1)

/

1. Generate ephemeral key
for ECDH with bpk
2. Derive encryption keys with HKDF
3. Encode session
4. Encrypt-then-MAC

AN

(epk,c, 1)

AN

b




Megolm Key Backups
2. Backup

esk, epk «— X25519.KGen(1")

kR < esk x bpk

ek || hk || iv « HKDF-SHA-256(0, R, &, 80)
3. Encode session

4. Encrypt-then-MAC

\

(epk,c, 1)

AN

(epk,c, 1) (epk,c, 1)

4
N



Megolm Key Backups
2. Backup

esRk, epk < X25519.KGen(1")
kR < esk x bpRk
ek || hk || iv + HKDF-SHA-256(0, k, @, 80)
m < session_data(

alg = megolm,

Id = gpR,

session = Ggpp,

dpk — dpl?snda

ipk — ipl?snda

fwd = dpka; || FWD)
C < AES-CBC(eR,iv, m)

(epk, c,T) 7 < HMAC-SHA-256(hR, ¢)

AN

(epk,c, 1) (epk,c, 1)

AN
b



Secure Secret
Storage & Sharing

Backup, recover and share
user-level secrets.

E.qg. Alice's (msk, usk, ssk).

Secret Storage:
e Encrypt secrets and
store on homeserver.
e Shared symmetric key
(may be password-
derived).

Secret Sharing:
e Use Olm to share
secrets to newly
verified devices.

Secure Secret
Storage & Sharing

Megolm
Key Backups

Verification
Framework

Key Request
Protocol




Secure Secret Sharing

Example: Sharing secret for Megolm Key Backups

\
AN \
\
N\
N\

Self Verification
e e >

request(m.megolm_backup.vl)

4




Secure Secret Sharing

Example: Sharing secret for Megolm Key Backups

Self Verification
e e >

request(m.megolm_backup.vl)

5} Dan verified
Olm.Enc(send(m.megolm_backup.vl,rk)) as Alice’s device?




Secure Secret Sharing

Example: Sharing secret for Megolm Key Backups

A\
E

Self Verification
e e >

request(m.megolm_backup.vl)

4

IN

\

5} Dan verified
Olm.Enc(send(m.megolm_backup.vl,rk)) as Alice’s device?

P S

1. Da verified
as Alice's device?
2. Did | request
this secret?
Accept rk.



Adversary
controlled
backup keys

Since Secure Secret
Sharing uses Olm to share
secrets between devices
(incl. Megolm backup keys)




Adversary
controlled
backup keys

Since Secure Secret
Sharing uses Olm to share
secrets between devices
(incl. Megolm backup keys)

AN
\
N\ N
N\

Self Verification

e i >

request(m.megolm_backup.vl)

4

Vi
N

Olm.Enc(send(m.megolm_backup.v1,rR))

1. Da 1 verified
as Alice’s device?

X



Adversary
controlled
backup keys

Since Secure Secret
Sharing uses Olm to share
secrets between devices
(incl. Megolm backup keys)

Accept Ggpr as Dao's session.

.E

Self Verification

e i >

request(m.megolm_backup.vl)

4

A

Olm.Enc(send(m.megolm_backup.v1,rR))

1. Da 1 verified
as Alice’s device?

f’b

Olm.Enc(fwd_key(Da, gpR, Sypr))

=
@

Sysks Sgprs Tmg < Megolm.Init(1")



Adversary
controlled
backup keys

Since Secure Secret
Sharing uses Olm to share
secrets between devices
(incl. Megolm backup keys)

Accept Ggpr as Dao's session.

1. Da verified
as Alice’s device?
2. Did | request
this secret?
Accept rkaqy.

.E

Self Verification

e i >

request(m.megolm_backup.vl)

A

4

AN

Olm.Enc(send(m.megolm_backup.v1,rR))

1. Da 1 verified
as Alice’s device?

Olm.Enc(fwd_key(Da 2, gpR, Sgpr))

=
@

Sysks Sgprs Tmg < Megolm.Init(1")

Megolm.Encrypt(Sgpr, send(mmegolm_backup.vl, rkyqy))

rRaqy < "NOtASecret”



Adversary
controlled
backup keys

Since Secure Secret
Sharing uses Olm to share
secrets between devices
(incl. Megolm backup keys)

Can we pull off the same
trick off again?

Accept Ggpr as Dao's session.

1. Da verified
as Alice’s device?
2. Did | request
this secret?
Accept rkaqy.

.E

Self Verification

e i >

request(m.megolm_backup.vl)

Vi
N

4

AN

Olm.Enc(send(m.megolm_backup.v1,rR))

1. Da 1 verified
as Alice’s device?

Olm.Enc(fwd_key(Da 2, gpR, Sgpr))

=
@

Sysks Sgprs Tmg < Megolm.Init(1")

AN

Megolm.Encrypt(Sgpr, send(mmegolm_backup.vl, rkyqy))

rRaqy < "NOtASecret”

(A,1) will now back-up all Megolm
decryption keys/inbound sessions



Modelling Matrix
& Finding Attacks

Secure Secret Cross-signing
Storage & Sharing Framework

Verification
Framework

Key Request
Key Backups Protocol




Group
Administration

Secure Secret Cross-signing
Storage & Sharing Framework

Verification
Framework

Megolm Key Request
Key Backups Protocol




Group
Administration

e Group membership is
managed through
events.




Group
Administration

e Group membership is
managed through
events.

e | ike messagesinthe
room.

G=(A B, C)




Group Q G=(A B, C,E)

Administration \
A
e Group membership is
managed through
events.
e | ike messagesinthe
room. N
'E
~




Group Q G=(A B, C,E)

Administration \
A
Group membership is
managed through
events.
Like messages in the
room. N

These events are




Server Control of
Group Membership

Aim: add a server-
controlled user to the
group attack.

G=(A B, C)




Server Control of
Group Membership

Aim: add a server-
controlled user to the
group attack.

G=(A B, C)

Alice invited Eve
to the group




Server Control of
Group Membership

Aim: add a server-
controlled user to the
group attack.

Can the server forge group
invites?

G=(A B, C E)




Server Control of
Group Membership

Common issue among
real-world group
messaging protocols.

More is Less: both Signal
and WhatsApp were
vulnerable to a burgle-into-
the-group attack.

@ o
%

# Rosler et al. - 2018 - More is Less On the End-to-End Security of Group .pdf (page 1 of 15)
1 D 0B @ @ @ @ [ M 8 I H-

2018 IEEE European Symposium on Security and Privacy

More is Less: On the End-to-End Security of Group Chats in
Signal, WhatsApp, and Threema

Paul Rosler, Christian Mainka, Jérg Schwenk
{paul.roesler, christian.mainka, joerg.schwenk} @rub.de
Horst Gortz Institute for IT Security
Chair for Network and Data Security
Ruhr-University Bochum

Abstract—Secure instant messaging is utilized in two variants:
one-to-one communication and group communication. While
the first variant has received much attention lately (Frosch
et al., EuroS&P16; Cohn-Gordon et al., EuroS&P17; Kobeissi
et al.,, EuroS&P17), little is known about the cryptographic
mechanisms and security guarantees of secure group commu-
nication in instant messaging.

To approach an investigation of group instant messaging
protocols, we first provide a comprehensive and realistic secu-
rity model. This model combines security and reliability goals
from various related literature to capture relevant properties
for communication in dynamic groups. Thereby the definitions
consider their satisfiability with respect to the instant delivery
of messages. To show its applicability, we analyze three widely
used real-world protocols: Signal, WhatsApp, and Threema.
By applying our model, we reveal several shortcomings with
respect to the security definition. Therefore we propose generic
countermeasures to enhance the protocols regarding the re-
quired security and reliability goals. Our systematic analysis
reveals that (1) the communications’ integrity - represented by
the integrity of all exchanged messages — and (2) the groups’

alacomoce  ronracontad hy thae momihore! ahilitvy af manaoair o

a list of their members. Additionally, meta information is
attached to groups, for example, a group title. Depending
on the IM application and its underlying protocol, groups
are administrated by selected users or all group members.

With the revelation of mass surveillance activities by
intelligence agencies, new IM applications incorporating
end-to-end encryption launched, as well es established IM
applications added encryption to their protocols to protect
the communication towards the message delivering servers.
Hence analyses, investigating these protocols, also include
malicious server-based attacks [3, 7].

In contrast to open standardized communication pro-
tocols like Extensible Messaging and Presence Protocol
(XMPP) or Internet Relay Chat (IRC), most IM protocols
are centralized such that users of each application can only
communicate among one another. As a result, a user cannot
choose the most trustworthy provider but needs to fully
trust the one provider that develops both, protocol and
application.

End-to-end encryption is the major security feature of se-
cure instant messaging protocols for protecting the protocol
security when considering malicious server-based attacks.

»



Server Control of
Group Membership

Common issue among
real-world group
messaging protocols.

Matrix has a fix
in progress!

O O @ O matrix-spec-proposals/propos: X -+ v
/i G QO B https://github.com/matrix-org/matrix-spec-pro. Matrix - Alice @ ma N, EE @ )
H matrix-org / matrix-spec-proposals ' Public L\ Notifications % Fork 366 77 Star 881 -

<> Code (%) Issues 16 i1 Pullrequests 402  (») Actions [f] Projects 1 @ Security |~ Insights

(Y ¥ fayedfcryptogra... ~ matrix-spec-proposals / proposals Q. Go to file
/ 3917-cryptographic-membership.md (&
@ duxovni Fix room ID in example creation event bddf787 - 10 months ago @ History
Preview | Code  Blame 559 lines (491 loc) - 29.3 KB Raw (0 & =

MSC3917: Cryptographically Constrained Room
Membership

In the current Matrix protocol, room membership events are not cryptographically signed, except by homeservers
during federation. This means that a malicious homeserver can easily insert additional members into an end-to-end
encrypted room. The falsified members will not receive keys for past messages, since those are only shared by
existing members when they invite new members, but the falsified members will still be provided with keys for all
new messages. Although the new member joining the room will be visible to all of the existing members, making it
more difficult to perform such an attack undetected, it would still be preferable to have a means for clients to
independently verify that a member actually belongs in a room.

This proposal provides a method for clients to sign room membership events such that the room memberships form
a tree of signatures rooted in the creation of the room, ensuring that every member belongs to a chain of invitations
that ultimately leads back to the room's creator. This establishes a cryptographically verifiable bounding set of
possible members of a room, significantly raising the barrier for homeservers to inject unauthorized members into
the room.



Attacks

Summary
COMPLETE BREAK AUTHENTICATION BREAK *

User/Device Confusion in Impersonation

Out-of-Band Verification through Key Sharing

6
(THEORETICAL)
IND-CCA
BREAK

CONFIDENTIALITY BREAK TRIVIAL CONFIDENTIALITY BREAK *

AUTHENTICATION BREAK
Adversary Controlled Server Control of

Protocol Confusion

Megolm Backup Key Group Membership




Attacks
Summary

COMPLETE BREAK AUTHENTICATION BREAK
User/Device Confusion in Impersonation

Out-of-Band Verification through Key Sharing

CONFIDENTIALITY BREAK TRIVIAL CONFIDENTIALITY BREAK

AUTHENTICATION BREAK
Adversary Controlled Server Control of

Protocol Confusion ,
Megolm Backup Key Group Membership

* Detectable in the user interface.
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Summary

COMPLETE BREAK AUTHENTICATION BREAK
User/Device Confusion in Impersonation

Out-of-Band Verification through Key Sharing

CONFIDENTIALITY BREAK TRIVIAL CONFIDENTIALITY BREAK

AUTHENTICATION BREAK
Adversary Controlled Server Control of

Protocol Confusion ,
Megolm Backup Key Group Membership

* Detectable in the user interface.



Modelling
Matrix

Completed formalisation of
Matrix cryptographic core.

Security analysis and proof
focuses on subset aiming
to capture how the security
of messages is affected by
device-to-device
Interactions and state
sharing.

# megolm.pdf (page 1 of 20)
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Device-Oriented Group Messaging:
A Formal Cryptographic Analysis of Matrix’ Core

Martin R. Albrecht*, Benjamin Dowling' and Daniel Jones*
*King’s College London, martin.albrecht@kcl.ac.uk
T Security of Advanced Systems Group, University of Sheffield, b.dowling @ sheffield.ac.uk
YInformation Security Group, Royal Holloway, University of London, dan.jones@ rhul.ac.uk

Abstract—Focusing on its cryptographic core, we provide the
first formal description of the Matrix secure group messaging
protocol. Observing that no existing secure messaging model
in the literature captures the relationships (and shared state)
between users, their devices and the groups they are a part of,
we introduce the Device-Oriented Group Messaging model to
capture these key characteristics of the Matrix protocol. Util-
ising our new formalism, we determine that Matrix achieves
the basic security notions of confidentiality and authentication,
provided it introduces authenticated group membership. On
the other hand, while the state sharing functionality in Matrix
conflicts with advanced security notions in the literature —
forward and post-compromise security — it enables features
such as history sharing and account recovery, provoking
broader questions about how such security notions should be
conceptualised.

1. Introduction

(TLS) to secure communication between clients and servers
(and between servers for federation), end-to-end encryption
is realised using a bespoke cryptographic protocol called
Megolm which extends the pairwise protocol Olm to support
group chat. Every chat in Matrix is a group chat, including 1-
on-1 chats. Thus, the study of its group messaging protocol
is central to understanding its security guarantees.

1.1. Prior Work

Cryptanalysis. An audit of the Olm and Megolm protocols
(along with their implementations) was performed by NCC
Group in 2016 [2]; this audit found a number of security is-
sues that have since been fixed or recorded as limitations [3],
[4]. Since then, several further cryptographic vulnerabilities
have been reported, e.g. in CVE-2021-34813, CVE-2021-
40824 and [5, Chapter 11]. Moreover, several practically




Interested?

Find our paper at

Keep an eye out for the
follow-up modelling paper!


https://ia.cr/2023/485
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SAS Attack

 ARJEnS

1. mpk_adv: dpk
2. mpk: mpk

2. SAS.VerifyMAC(A, D4 j, B, Dg j, mac, k, t)

(Idgev, MACqey), (Idcs, maces), RS < mac
C <= "MATRIX_KEY_VERIFICATION_MAC" || B || Dgj||A|l Da;llt
ks’ < SAS.CalcMAC(R, sort(idgey, idcs), c || "KEY_IDS")
assert ks’ = ks
V<00
for (id, mac) in ((idgey, MaCqey), (idcs, Maces))
"ed25519:" || Dg;j + id
/| Check if this is a device verification request
dpk < HS.QueryKey("dpk", B, Dg )

SAS.SendMAC(A, Da i, B, Dg j, mpk, dpR, R, t) if dpk # L then

D+ x
if mac = SAS.CalcMAC(R, dpk, c || id) then
v+ vU{(B,D)}
/| Check if this is a cross-signing verification request

elseif (x = HS.QueryKey("mpk", B)

C < "MATRIX_KEY_VERIFICATION_MAC" |[A|| Da; || B Dg,|l t
idgey = "€d25519:" || D4

MAacCqey <— SAS.CalcMAC(R, dpR, ¢ || idgey)

ides < "ed25519:" || mpk

maces < SAS.CalcMAC(k, mpR, ¢ || idcs) N mac = SAS.CalcMAC(k, x, ¢ || id)) then
ms < ((idgev, MAaCqey), (Idcs, Maces)) mpR « x
ks < SAS.CalcMAC(k, sort(idgey, Ides), C || "KEY_IDS") v < vU{(B,mpRk)}

return (ms, /?S) return v

3. SAS.SignDevice(A, Dy )

/| Check whether D4 ;i is a cross-signing identity
mpk < HS.QueryKey("mpk”,A)
if D5 ; = mpk then
return UserVerified(A, mpR)
/| Otherwise, D4 ; refers to a device
else
return DeviceVerified(A, D, )



