
Weak Fiat-Shamir Attacks
on Modern Proof Systems

Quang Dao
qvd@andrew.cmu.edu

Paul Grubbs
paulgrub@umich.edu

Workshop on Attacks in Cryptography, 2023

Jim Miller
james.miller@trailofbits.com

Opal Wright
opal.wright@trailofbits.com

mailto:opal.wright@trailofbits.com

Proof Systems and Blockchain Applications

Proof Systems and Blockchain Applications

Proof Systems and Blockchain Applications

How do they work?

Proof Systems from Fiat-Shamir

Proof Systems from Fiat-Shamir

(random)

(random)

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Proof Systems from Fiat-Shamir

(random)

(random)

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

Proof Systems from Fiat-Shamir

(random)

(random) Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

Proof Systems from Fiat-Shamir

(random)

(random)

π = (a1, a2, …, an+1)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

Proof Systems from Fiat-Shamir

(random)

(random)

π = (a1, a2, …, an+1)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

*𝖯 𝖵
π

x x

Security:

Proof Systems from Fiat-Shamir

Soundness: If has no , then rejects.x w 𝖵

(random)

(random)

π = (a1, a2, …, an+1)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

*𝖯 𝖵
π

x x

Security:

Proof Systems from Fiat-Shamir

Soundness: If has no , then rejects.x w 𝖵

Knowledge Soundness: If accepts, then
* must “know” .

𝖵
𝖯 w

(random)

(random)

π = (a1, a2, …, an+1)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

*𝖯 𝖵
π

x x

Security:

Proof Systems from Fiat-Shamir

Soundness: If has no , then rejects.x w 𝖵

Knowledge Soundness: If accepts, then
* must “know” .

𝖵
𝖯 w

(random)

(random)

π = (a1, a2, …, an+1)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

*𝖯 𝖵
π

x x

Security:

Proof Systems from Fiat-Shamir

Soundness: If has no , then rejects.x w 𝖵

Knowledge Soundness: If accepts, then
* must “know” .

𝖵
𝖯 w

(random)

(random)

π = (a1, a2, …, an+1)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋

⋮

a1

c1

a2

an+1
Accept /
Reject

c2

Public
Statement

Private
Witness

Non-Adaptive
*𝖯 𝖵

π

x x

Security:

Fiat-Shamir

Strong Fiat-Shamir for Adaptive Security

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Security:

Public
Statement

Private
Witness

Fiat-Shamir

Strong Fiat-Shamir for Adaptive Security

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Security:

Public
Statement

Private
Witness

Fiat-Shamir

Strong Fiat-Shamir for Adaptive Security

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(x, a1)
c2 = 𝖧(x, a1, a2)

⋮
cn = 𝖧(x, a1, …, an)

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Strong

Security:

Public
Statement

Private
Witness

Fiat-Shamir

Strong Fiat-Shamir for Adaptive Security

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

Derive

c1 = 𝖧(x, a1)
c2 = 𝖧(x, a1, a2)

⋮
cn = 𝖧(x, a1, …, an)

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Strong

Security:

Public
Statement

Private
Witness

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Security:

Public
Statement

Private
Witness

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Weak
!

Security:

Public
Statement

Private
Witness

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Weak
!

Security:

Public
Statement

Private
Witness

Simple -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Weak
!

Security:

Public
Statement

Private
Witness

Simple -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

Weak
!

Security:

Public
Statement

Private
Witness

Simple -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

/
/
?
?

Weak
! Modern Proof Systems

(e.g. Bulletproofs, Plonk, Spartan)

?
Security:

Public
Statement

Private
Witness

Simple -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

/
/
?
?

Weak
! Modern Proof Systems

(e.g. Bulletproofs, Plonk, Spartan)

?
Security:

Public
Statement

Private
Witness

Simple -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

1. Are there Weak Fiat-Shamir Attacks against Modern Proof Systems?

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

/
/
?
?

Weak
! Modern Proof Systems

(e.g. Bulletproofs, Plonk, Spartan)

?
Security:

Public
Statement

Private
Witness

Simple -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

1. Are there Weak Fiat-Shamir Attacks against Modern Proof Systems?

2. Do Modern-Day Systems Implement Weak Fiat-Shamir?

Derive

c1 = 𝖧(a1)
c2 = 𝖧(a1, a2)

⋮
cn = 𝖧(a1, …, an)

Fiat-Shamir

Weak Fiat-Shamir and Attacks

𝖯𝗋𝗈𝗏𝖾𝗋

x , w x

𝖵𝖾𝗋𝗂𝖿𝗂𝖾𝗋
π = (a1, a2, …, an+1)

Soundness: If has no , then rejects.

Knowledge Soundness: If accepts, then
* must “know” .

x w 𝖵

𝖵
𝖯 w

⋮

a1

c1

a2

an+1
Accept /
Reject

(random)

c2 (random)

𝖯

x , w x

𝖵

Accept /
Reject

𝖧

*𝖯 𝖵
x , π

Adaptive

Compute and
simultaneously

π x

/
/
?
?

Weak
! Modern Proof Systems

(e.g. Bulletproofs, Plonk, Spartan)

?
Security:

Public
Statement

Private
Witness

Simple -Protocols

(e.g. Schnorr, Girault, Chaum-Pedersen)

Σ

1. Are there Weak Fiat-Shamir Attacks against Modern Proof Systems?

2. Do Modern-Day Systems Implement Weak Fiat-Shamir?

3. How Severe are Weak Fiat-Shamir Vulnerabilities?

Our Contributions

Our Contributions
1. Comprehensive Survey of 75+ open-source implementations:

 36 weak F-S vulnerabilities across 12 different proof systems.⟹

Our Contributions
1. Comprehensive Survey of 75+ open-source implementations:

 36 weak F-S vulnerabilities across 12 different proof systems.⟹

Our Contributions
1. Comprehensive Survey of 75+ open-source implementations:

 36 weak F-S vulnerabilities across 12 different proof systems.⟹

Our Contributions
1. Comprehensive Survey of 75+ open-source implementations:

 36 weak F-S vulnerabilities across 12 different proof systems.⟹

2. Explicit Attacks against Bulletproofs, Plonk, Spartan, and Wesolowski’s VDF:

 Provably break adaptive (knowledge) soundness.⟹

Our Contributions
1. Comprehensive Survey of 75+ open-source implementations:

 36 weak F-S vulnerabilities across 12 different proof systems.⟹

2. Explicit Attacks against Bulletproofs, Plonk, Spartan, and Wesolowski’s VDF:

 Provably break adaptive (knowledge) soundness.⟹

3. Case Studies of Practical Impacts:

 Unlimited currency minting in two separate blockchain protocols⟹

Our Contributions
1. Comprehensive Survey of 75+ open-source implementations:

 36 weak F-S vulnerabilities across 12 different proof systems.⟹

2. Explicit Attacks against Bulletproofs, Plonk, Spartan, and Wesolowski’s VDF:

 Provably break adaptive (knowledge) soundness.⟹

3. Case Studies of Practical Impacts:

 Unlimited currency minting in two separate blockchain protocols⟹

4. Discussion & Takeaways for Academics & Practitioners.

Our Contributions
1. Comprehensive Survey of 75+ open-source implementations:

 36 weak F-S vulnerabilities across 12 different proof systems.⟹

2. Explicit Attacks against Bulletproofs, Plonk, Spartan, and Wesolowski’s VDF:

 Provably break adaptive (knowledge) soundness.⟹

3. Case Studies of Practical Impacts:

 Unlimited currency minting in two separate blockchain protocols⟹

4. Discussion & Takeaways for Academics & Practitioners.

Weak Fiat-Shamir Attacks
(as easy as solving a linear equation)

Plonk - Protocol Description

Plonk - Protocol Description

Constraint System:

Plonk - Protocol Description

Constraint System:

3 2 w1

w2 w3

10

+ ×

×

Plonk - Protocol Description

Constraint System:

3 2 w1

w2 w3

10

+ ×

×

Public
Input

Plonk - Protocol Description

Constraint System:

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

3 2 w1

w2 w3

10

+ ×

×

Public
Input

Plonk - Protocol Description

Constraint System:

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

3 2 w1

w2 w3

10

+ ×

×

Public
Input

Plonk - Protocol Description

Constraint System:

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

3 2 w1

w2 w3

10

+ ×

×

Public
Input

Plonk - Protocol Description

Constraint System:

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2 3 2 w1

w2 w3

10

+ ×

×

Public
Input

Plonk - Protocol Description

Constraint System:

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

3 2 w1

w2 w3

10

+ ×

×

Public
Input

Plonk - Protocol Description

Constraint System:

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

3 2 w1

w2 w3

10

+ ×

×

Public
Input

Plonk - Protocol Description

Constraint System:

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

3 2 w1

w2 w3

10

+ ×

×

Gate Check

Public
Input

Plonk - Protocol Description

Constraint System:

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

3 2 w1

w2 w3

10

+ ×

×

Consistency CheckGate Check

Public
Input

Plonk - Protocol Description

Constraint System:

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

3 2 w1

w2 w3

10

+ ×

×

Consistency CheckGate Check Vanishing Domain

Public
Input

Plonk - Protocol Description

Constraint System:

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

3 2 w1

w2 w3

10

+ ×

×

Consistency CheckGate Check Vanishing Domain

Batching Challenge Evaluation Point

Public
Input

Plonk - Protocol Description

Constraint System:

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

3 2 w1

w2 w3

10

+ ×

×

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)
Batching Challenge Evaluation Point

Public
Input

Plonk - Protocol Description

Constraint System:

• Gate Vectors: ⃗a = (3,2,w2), b⃗ = (2,w1, w3), ⃗c = (w2, w3,10)

• Gate Constraints: ⃗a1 + b⃗1 = ⃗c1, ⃗a2 × b⃗2 = ⃗c2, ⃗a3 × b⃗3 = ⃗c3

• Consistency Constraints: ⃗a2 = b⃗1, ⃗a3 = ⃗c1, b⃗3 = ⃗c2

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

3 2 w1

w2 w3

10

+ ×

×

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)
Batching Challenge Evaluation Point

(Fixed) Scalars

Public
Input

Plonk - Weak Fiat-Shamir Attack
Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Plonk - Weak Fiat-Shamir Attack

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Plonk - Weak Fiat-Shamir Attack

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

1. Select arbitrary polynomials for the proof compute all evaluations except .⟹ 𝖯𝖨(ζ)

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Plonk - Weak Fiat-Shamir Attack

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

1. Select arbitrary polynomials for the proof compute all evaluations except .⟹ 𝖯𝖨(ζ)

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Plonk - Weak Fiat-Shamir Attack

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

1. Select arbitrary polynomials for the proof compute all evaluations except .⟹ 𝖯𝖨(ζ)

2. Solve for the public values that will pass verification.𝖯𝖨 = (𝖯𝖨1, …, 𝖯𝖨k)

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Plonk - Weak Fiat-Shamir Attack

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

1. Select arbitrary polynomials for the proof compute all evaluations except .⟹ 𝖯𝖨(ζ)

2. Solve for the public values that will pass verification.𝖯𝖨 = (𝖯𝖨1, …, 𝖯𝖨k)

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Linear Equation

Plonk - Weak Fiat-Shamir Attack

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

1. Select arbitrary polynomials for the proof compute all evaluations except .⟹ 𝖯𝖨(ζ)

2. Solve for the public values that will pass verification.𝖯𝖨 = (𝖯𝖨1, …, 𝖯𝖨k)

In Contrast: For strong Fiat-Shamir, changing will also change .𝖯𝖨 α, ζ

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Linear Equation

Plonk - Weak Fiat-Shamir Attack

Weak F-S Attack: When is not part of hash computation (for deriving)𝖯𝖨 α, ζ

1. Select arbitrary polynomials for the proof compute all evaluations except .⟹ 𝖯𝖨(ζ)

2. Solve for the public values that will pass verification.𝖯𝖨 = (𝖯𝖨1, …, 𝖯𝖨k)

Degrees of freedom: can set all but one to be arbitrary.𝖯𝖨i

In Contrast: For strong Fiat-Shamir, changing will also change .𝖯𝖨 α, ζ

Verification Equation:

𝖯𝖨(ζ) + 𝖤𝗊(ζ) + α ⋅ 𝖯𝖾𝗋(ζ) + α2 ⋅ (𝗓(ζ) − 1)𝖫1(ζ) = 𝖹𝖧(ζ) ⋅ 𝗍(ζ)

Consistency CheckGate Check Vanishing Domain

k

∑
i=1

𝖯𝖨i ⋅ 𝖫i(ζ)

(Fixed) Scalars

Linear Equation

Bulletproofs - Protocol Description

Bulletproofs - Protocol Description
Aggregate Range Proof Relation:

•

•

V1 = gv1 hγ1 , … , Vm = gvm hγm

v1, …, vm ∈ [0, 2n − 1]

Bulletproofs - Protocol Description
Aggregate Range Proof Relation:

•

•

V1 = gv1 hγ1 , … , Vm = gvm hγm

v1, …, vm ∈ [0, 2n − 1]

y, z

x

T1, T2

̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

, A S
𝖯 𝖵

Bulletproofs - Protocol Description
Aggregate Range Proof Relation:

•

•

V1 = gv1 hγ1 , … , Vm = gvm hγm

v1, …, vm ∈ [0, 2n − 1]

y, z

x

T1, T2

̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

, A S
𝖯 𝖵

Note: , in an honest proof

(with known by)

T1 = gt1 hβ1 T2 = gt2 hβ2

t1, β1, t2, β2 𝖯

Bulletproofs - Protocol Description
Aggregate Range Proof Relation:

•

•

V1 = gv1 hγ1 , … , Vm = gvm hγm

v1, …, vm ∈ [0, 2n − 1]

y, z

x

T1, T2

̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

, A S
𝖯 𝖵

Note: , in an honest proof

(with known by)

T1 = gt1 hβ1 T2 = gt2 hβ2

t1, β1, t2, β2 𝖯

Verification:

Bulletproofs - Protocol Description
Aggregate Range Proof Relation:

•

•

V1 = gv1 hγ1 , … , Vm = gvm hγm

v1, …, vm ∈ [0, 2n − 1]

y, z

x

T1, T2

̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

, A S
𝖯 𝖵

V1
z2 ⋅ … ⋅ Vm

zm+1 = g ̂t ⋅ hβx ⋅ g−δ(y,z) ⋅ T1
−x ⋅ T2

−x2

Note: , in an honest proof

(with known by)

T1 = gt1 hβ1 T2 = gt2 hβ2

t1, β1, t2, β2 𝖯

Verification: (along with IPA check)

Bulletproofs - Protocol Description
Aggregate Range Proof Relation:

•

•

V1 = gv1 hγ1 , … , Vm = gvm hγm

v1, …, vm ∈ [0, 2n − 1]

y, z

x

T1, T2

̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

, A S
𝖯 𝖵

V1
z2 ⋅ … ⋅ Vm

zm+1 = g ̂t ⋅ hβx ⋅ g−δ(y,z) ⋅ T1
−x ⋅ T2

−x2

Note: , in an honest proof

(with known by)

T1 = gt1 hβ1 T2 = gt2 hβ2

t1, β1, t2, β2 𝖯

Verification: (along with IPA check)

⟹

Bulletproofs - Protocol Description
Aggregate Range Proof Relation:

•

•

V1 = gv1 hγ1 , … , Vm = gvm hγm

v1, …, vm ∈ [0, 2n − 1]

y, z

x

T1, T2

̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

, A S
𝖯 𝖵

V1
z2 ⋅ … ⋅ Vm

zm+1 = g ̂t ⋅ hβx ⋅ g−δ(y,z) ⋅ T1
−x ⋅ T2

−x2

{v1 z2 + … + vm zm+1 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + … + γm zm+1 = βx − β1 x − β2 x2

Note: , in an honest proof

(with known by)

T1 = gt1 hβ1 T2 = gt2 hβ2

t1, β1, t2, β2 𝖯

Verification:

Exponents of g, h :

(along with IPA check)

⟹

Bulletproofs - Protocol Description
Aggregate Range Proof Relation:

•

•

V1 = gv1 hγ1 , … , Vm = gvm hγm

v1, …, vm ∈ [0, 2n − 1]

y, z

x

T1, T2

̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

, A S
𝖯 𝖵

V1
z2 ⋅ … ⋅ Vm

zm+1 = g ̂t ⋅ hβx ⋅ g−δ(y,z) ⋅ T1
−x ⋅ T2

−x2

{v1 z2 + … + vm zm+1 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + … + γm zm+1 = βx − β1 x − β2 x2

Note: , in an honest proof

(with known by)

T1 = gt1 hβ1 T2 = gt2 hβ2

t1, β1, t2, β2 𝖯

Verification:

Exponents of g, h :

(along with IPA check)

⟹

Bulletproofs - Weak Fiat-Shamir Attack
y, z

x

T1, T2

̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

, A S
𝖯 𝖵Aggregate Range Proof Relation:

•

•

V1 = gv1 hγ1 , … , Vm = gvm hγm

v1, …, vm ∈ [0, 2n − 1]

{v1 z2 + … + vm zm+1 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + … + γm zm+1 = βx − β1 x − β2 x2

Bulletproofs - Weak Fiat-Shamir Attack
y, z

x

T1, T2

̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

, A S
𝖯 𝖵

Weak F-S Attack: When are not hashedV1, …, Vm

Aggregate Range Proof Relation:

•

•

V1 = gv1 hγ1 , … , Vm = gvm hγm

v1, …, vm ∈ [0, 2n − 1]

{v1 z2 + … + vm zm+1 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + … + γm zm+1 = βx − β1 x − β2 x2

Bulletproofs - Weak Fiat-Shamir Attack
y, z

x

T1, T2

̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

, A S
𝖯 𝖵

Weak F-S Attack: When are not hashedV1, …, Vm

1. Compute ’s messages using an arbitrary witness:

• Set for arbitrary .

𝖯

T1 = gt1hβ1, T2 = gt2hβ2 t1, t2, β1, β2

Aggregate Range Proof Relation:

•

•

V1 = gv1 hγ1 , … , Vm = gvm hγm

v1, …, vm ∈ [0, 2n − 1]

{v1 z2 + … + vm zm+1 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + … + γm zm+1 = βx − β1 x − β2 x2

Bulletproofs - Weak Fiat-Shamir Attack
y, z

x

T1, T2

̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

, A S
𝖯 𝖵

Weak F-S Attack: When are not hashedV1, …, Vm

1. Compute ’s messages using an arbitrary witness:

• Set for arbitrary .

𝖯

T1 = gt1hβ1, T2 = gt2hβ2 t1, t2, β1, β2

2. Solve for that satisfy .v1, …, vm, γ1, …, γm (1)

(1)

Aggregate Range Proof Relation:

•

•

V1 = gv1 hγ1 , … , Vm = gvm hγm

v1, …, vm ∈ [0, 2n − 1]

{v1 z2 + … + vm zm+1 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + … + γm zm+1 = βx − β1 x − β2 x2

Practical Impacts
(printing money on blockchains for fun and profit)

Weak Fiat-Shamir Attacks

Practical Impacts
(printing money on blockchains for fun and profit)

Weak Fiat-Shamir Attacks

We didn’t do this!

Practical Impacts
(printing money on blockchains for fun and profit)

Weak Fiat-Shamir Attacks

We didn’t do this!
(but others might have…

Practical Impacts
(printing money on blockchains for fun and profit)

Weak Fiat-Shamir Attacks

We didn’t do this!
(but others might have…
…and we wouldn’t know!)

Case Study: Dusk Network

Case Study: Dusk Network

(as of August 18, 2023)

Case Study: Dusk Network
Transaction Model (simplified):

(as of August 18, 2023)

Case Study: Dusk Network
Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Existing Coins

(as of August 18, 2023)

Case Study: Dusk Network
Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍Coin
Enc(v)

pk

Enc(r)

Existing Coins

(as of August 18, 2023)

Case Study: Dusk Network
Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍Coin
Enc(v)

pk

Enc(r)Tx

Inputs

Outputs Pf

Nulls

Existing Coins

(as of August 18, 2023)

Case Study: Dusk Network
Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍Coin
Enc(v)

pk

Enc(r)Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

(as of August 18, 2023)

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Enc(v)

pk

Enc(r)Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Enc(v)

pk

Enc(r)Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Enc(v)

pk

Enc(r)

Weak F-S Attack:

Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Enc(v)

pk

Enc(r)

Weak F-S Attack:

Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Enc(v)

pk

Enc(r)

Weak F-S Attack:

Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Enc(v)

pk

Enc(r)

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Enc(v)

pk

Enc(r)

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Transaction Model (simplified):

I1 I2 In
…

… …

𝗋𝗍

Proof Relation: (proved using Plonk)

• Nullifier check: , input

• Range check: , input & output

• Equality check:

• Merkle membership: is in position w.r.t root

𝗇𝗎𝗅𝗅I = H(pk, 𝗉𝗈𝗌I) ∀ I

vin, vout ∈ [0,264 − 1] ∀

∑ vin = ∑ vout

I 𝗉𝗈𝗌I 𝗋𝗍

Public Inputs:

• Set of inputs & output coins

• Nullifier for each input 𝗇𝗎𝗅𝗅I I

Coin
Enc(v)

pk

Enc(r)

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Tx

Inputs

Outputs Pf

Nulls

Existing Coins

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

2022

Vulnerability
disclosed

March 18

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

Testnet
launched

March 22

2022

Vulnerability
disclosed

March 18

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

Testnet
launched

March 22

2022

Vulnerability
disclosed

March 18 April 5

Patch
proposed

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

Testnet
launched

March 22

2022

April 11

Patch
deployed

Vulnerability
disclosed

March 18 April 5

Patch
proposed

Case Study: Dusk Network

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

Testnet
launched

March 22

2022

April 11

Patch
deployed

Vulnerability
disclosed

March 18 April 5

Patch
proposed

Case Study: Dusk Network

Was this attack exploited?
Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

Testnet
launched

March 22

2022

April 11

Patch
deployed

Vulnerability
disclosed

March 18 April 5

Patch
proposed

Case Study: Dusk Network

Was this attack exploited?

• Unlikely given short timeline…

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

Testnet
launched

March 22

2022

April 11

Patch
deployed

Vulnerability
disclosed

March 18 April 5

Patch
proposed

Case Study: Dusk Network

Was this attack exploited?

• Unlikely given short timeline…

• But cannot be ruled out!

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

Testnet
launched

March 22

2022

April 11

Patch
deployed

Vulnerability
disclosed

March 18 April 5

Patch
proposed

Case Study: Dusk Network

Was this attack exploited?

• Unlikely given short timeline…

• But cannot be ruled out!

• Forged proofs are indistinguishable from
honest proofs

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof w/ arbitrary
input, setting nullifier to satisfy .

π
π

Disclosure Timeline:

Testnet
launched

March 22

2022

April 11

Patch
deployed

Vulnerability
disclosed

March 18 April 5

Patch
proposed

Case Study: Dusk Network

Case Study: Incognito Chain

Case Study: Incognito Chain
Description:

Case Study: Incognito Chain
Description:

Case Study: Incognito Chain
Description:

Case Study: Incognito Chain
Description:

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

Case Study: Incognito Chain
Description:

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain
Description:

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain
Description:

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain
Description:

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain
Description:

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

• Choose to satisfy
equality check as well as
BP verification equation

⃗vin , ⃗vout

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain
Description:

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

• Choose to satisfy
equality check as well as
BP verification equation

⃗vin , ⃗vout

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain
Description:

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

• Choose to satisfy
equality check as well as
BP verification equation

⃗vin , ⃗vout
v1 = v2 + v3 + v4

v1 z2 + v2 z3 + v3 z4 + v4 z5 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + γ2 z3 + γ3 z4 + γ4 z5 = βx − β1 x − β2 x2

(input and outputs)v1 v2, v3, v4

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain
Description:

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

• Choose to satisfy
equality check as well as
BP verification equation

⃗vin , ⃗vout
v1 = v2 + v3 + v4

v1 z2 + v2 z3 + v3 z4 + v4 z5 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + γ2 z3 + γ3 z4 + γ4 z5 = βx − β1 x − β2 x2

(input and outputs)v1 v2, v3, v4

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain
Description:

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

• Choose to satisfy
equality check as well as
BP verification equation

⃗vin , ⃗vout
v1 = v2 + v3 + v4

v1 z2 + v2 z3 + v3 z4 + v4 z5 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + γ2 z3 + γ3 z4 + γ4 z5 = βx − β1 x − β2 x2

(input and outputs)v1 v2, v3, v4

1 PRV

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain
Description:

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

• Choose to satisfy
equality check as well as
BP verification equation

⃗vin , ⃗vout
v1 = v2 + v3 + v4

v1 z2 + v2 z3 + v3 z4 + v4 z5 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + γ2 z3 + γ3 z4 + γ4 z5 = βx − β1 x − β2 x2

(input and outputs)v1 v2, v3, v4

1 bazillion PRV!
1 PRV

 enforced by BP aggregate
range proofs
⟸

Case Study: Incognito Chain
Description:

Proof Relation:

• Equality check:

• Range check: , input & output
∑ vin = ∑ vout

vin, vout ∈ [0,264 − 1] ∀

 enforced by (linkable) ring signature⟸

Weak F-S Attack:

• Choose to satisfy
equality check as well as
BP verification equation

⃗vin , ⃗vout
v1 = v2 + v3 + v4

v1 z2 + v2 z3 + v3 z4 + v4 z5 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + γ2 z3 + γ3 z4 + γ4 z5 = βx − β1 x − β2 x2

(input and outputs)v1 v2, v3, v4

1 bazillion PRV!
1 PRV

Disclosure Timeline:

Case Study: Incognito Chain

v1 = v2 + v3 + v4

v1 z2 + v2 z3 + v3 z4 + v4 z5 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + γ2 z3 + γ3 z4 + γ4 z5 = βx − β1 x − β2 x2

(input and outputs)v1 v2, v3, v4

1 bazillion PRV!
1 PRV

Disclosure Timeline:

Vuln.
disclosed

April 25

2023

Case Study: Incognito Chain

v1 = v2 + v3 + v4

v1 z2 + v2 z3 + v3 z4 + v4 z5 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + γ2 z3 + γ3 z4 + γ4 z5 = βx − β1 x − β2 x2

(input and outputs)v1 v2, v3, v4

1 bazillion PRV!
1 PRV

Disclosure Timeline:

Vuln.
disclosed

April 25

2023

April 26

Patch
proposed

Case Study: Incognito Chain

v1 = v2 + v3 + v4

v1 z2 + v2 z3 + v3 z4 + v4 z5 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + γ2 z3 + γ3 z4 + γ4 z5 = βx − β1 x − β2 x2

(input and outputs)v1 v2, v3, v4

1 bazillion PRV!
1 PRV

Disclosure Timeline:

Vuln.
disclosed

April 25

2023

May 1

Patch
deployed

April 26

Patch
proposed

Case Study: Incognito Chain

v1 = v2 + v3 + v4

v1 z2 + v2 z3 + v3 z4 + v4 z5 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + γ2 z3 + γ3 z4 + γ4 z5 = βx − β1 x − β2 x2

(input and outputs)v1 v2, v3, v4

1 bazillion PRV!
1 PRV

Disclosure Timeline:

Vuln.
disclosed

April 25

2023

May 1

Patch
deployed

Mainnet
launched

Nov 2019 April 26

Patch
proposed

Case Study: Incognito Chain

v1 = v2 + v3 + v4

v1 z2 + v2 z3 + v3 z4 + v4 z5 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + γ2 z3 + γ3 z4 + γ4 z5 = βx − β1 x − β2 x2

(input and outputs)v1 v2, v3, v4

1 bazillion PRV!
1 PRV

Disclosure Timeline:

Vuln.
disclosed

April 25

2023

May 1

Patch
deployed

Mainnet
launched

Nov 2019 April 26

Patch
proposed

Case Study: Incognito Chain

4 years!

v1 = v2 + v3 + v4

v1 z2 + v2 z3 + v3 z4 + v4 z5 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + γ2 z3 + γ3 z4 + γ4 z5 = βx − β1 x − β2 x2

(input and outputs)v1 v2, v3, v4

1 bazillion PRV!
1 PRV

Was this attack exploited?

• As with Plonk, forged BP proofs are
indistinguishable from honest proofs

• So we don’t know…

Disclosure Timeline:

Vuln.
disclosed

April 25

2023

May 1

Patch
deployed

Mainnet
launched

Nov 2019 April 26

Patch
proposed

Case Study: Incognito Chain

4 years!

v1 = v2 + v3 + v4

v1 z2 + v2 z3 + v3 z4 + v4 z5 = ̂t − δ(y, z) − t1 x − t2 x2

γ1 z2 + γ2 z3 + γ3 z4 + γ4 z5 = βx − β1 x − β2 x2

(input and outputs)v1 v2, v3, v4

1 bazillion PRV!
1 PRV

Practical Impacts

Weak Fiat-Shamir Attacks

(do practitioners know about the dangers of weak F-S?)

Why is Weak F-S so widespread?

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specify Fiat-Shamir:

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specify Fiat-Shamir:

 (some) does not get it right on the first try!⟹

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specify Fiat-Shamir:

 (some) does not get it right on the first try!⟹

Insufficient Coverage of “correct” Fiat-Shamir

Plonk:

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specify Fiat-Shamir:

 (some) does not get it right on the first try!⟹

(March 2020)

Insufficient Coverage of “correct” Fiat-Shamir

Plonk: (December 2019)

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specify Fiat-Shamir:

 (some) does not get it right on the first try!⟹

Insufficient Coverage of “correct” Fiat-Shamir

Plonk:

Bulletproofs:

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specify Fiat-Shamir:

 (some) does not get it right on the first try!⟹

Insufficient Coverage of “correct” Fiat-Shamir

Plonk:

Bulletproofs:

(July 2018)

(April 2022)

How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S

How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S

How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S

How to prevent weak Fiat-Shamir?
Dusk Network patch (April 2022)

Existing tooling does not prevent weak F-S

How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S

How to prevent weak Fiat-Shamir?
Mitigation Idea:

Detection Idea:

Existing tooling does not prevent weak F-S

How to prevent weak Fiat-Shamir?
Mitigation Idea:

Detection Idea:

• Declare (to Merlin) protocol flow
ahead of time

• Raise flag if this is not followed

Existing tooling does not prevent weak F-S

How to prevent weak Fiat-Shamir?
Mitigation Idea:

Detection Idea:

• Declare (to Merlin) protocol flow
ahead of time

• Raise flag if this is not followed

• Transcript should contain all
objects flowed through both &

• If not, raise flag (w/ some error)

𝖯 𝖵

Existing tooling does not prevent weak F-S

How to prevent weak Fiat-Shamir?

Long-term: Standardization of Fiat-Shamir

Mitigation Idea:

Detection Idea:

• Declare (to Merlin) protocol flow
ahead of time

• Raise flag if this is not followed

• Transcript should contain all
objects flowed through both &

• If not, raise flag (w/ some error)

𝖯 𝖵

Summary

Summary

Never (,ever, ever) implement weak Fiat-Shamir in practice!

Summary

Never (,ever, ever) implement weak Fiat-Shamir in practice!

• Hash everything (it’s not that expensive anyway)

Summary

Never (,ever, ever) implement weak Fiat-Shamir in practice!

• Hash everything (it’s not that expensive anyway)

For Academics: Specify the correct Fiat-Shamir transform!

Summary

Never (,ever, ever) implement weak Fiat-Shamir in practice!

• Hash everything (it’s not that expensive anyway)

For Academics: Specify the correct Fiat-Shamir transform!

Thank You!

Read our paper
(ePrint 2023/691)

