Weak Fiat-Shamir Attacks
on Modern Proof Systems

Quang Dao Jim Miller Opal Wright Paul Grubbs

qgvd@andrew.cmu.edu james.miller@trailofbits.com opal.wright@trailofbits.com paulgrub@umich.edu

(Carnegie TRAN

Viellon®. AL M
. "RDITO

6

Workshop on Attacks in Cryptography, 2023

UIliVeI'Sity | 0 MICHIGAN

mailto:opal.wright@trailofbits.com

Proof Systems and Blockchain Applications

Proof Systems and Blockchain Applications

/7cash 1S cash f()r Monero Means Money ¢ polygon 2.0

Private, decentralizea

cryptocurrency that keeps your
the Nneéw age, CryPLOCUITENCy that (eeps The Value Layer of the Internet

secure.

é STARK\WARE Filecoin is a decentralized storage Regu IateC!
network designed to store humanity’s Decentra ||Zed

STARK Proof Pioneers most important information.

Bringing scalability, security, and EI NnanNnmNao
privacy to a blockchain near you

Espresso helps rollups: iistsie=ibhs sk
Whemrpareer MMM th ereum's Fir 2 ncrypted

COUNTERPARTY DISCOVERY, SOLVING,

tec is a first-of-its-kind hybrid zkRollup supporting both public and

AND ATOMIC MULTI-CHAIN SETTLEMENT

ivate smart contract execution.

The Native zkEVM ScafMina is building the [mg!
Solution for Ethereurysecurity layer for wet he ZK COPFOCGSSOI’
r Ethereum

Scroll is a zkEVM-based zkRollup on Ethereum that ena

native compatibility for existing Ethereum applications anc kn OWI ed g e p rOOfS-

Proof Systems and Blockchain Applications

/7cash 1S cash f()r Monero Means Money ¢J° polygon 2.0

Private, decentralizea

cryptocurrency that keeps your
the Nneéw age, CryPLOCUITENCY that Keeps Y The Value Layer of the Internet

é STARK\WARE Filecoinis a decentralized storage RegLIIateC!
satuiorle dacianad ta ctara bumaninee Nanantrglized
privacy to a blockchain nea

How do they work?
I\ INTENT-CENTRIC [0l

COMPOSABLE PRIVACY, DE(S —— ed

COUNTERPARTY DISCOVERY, SOLVING,
rtec is a first-of-its-kind hybrid zkRollup supporting both public and
AND ATOMIC MULTI-CHAIN SETTLEMENT vate smart contractexeciin

The Native zkEVM ScalfMina is building the [ug
Solution for Ethereur§security layer for wel J he ZK COprOCGSSOI’
or Ethereum

STARK Proof Pioneers
Bringing scalability, securit

Scroll is a zkEVM-based zkRollup on Ethereum that ena

native compatibility for existing Ethereum applications anc kn OWI ed g e p rOOfS-

Proof Systems from Fiat-Shamir

Proof Systems from Fiat-Shamir

Prover a Verifier
Cl (random)
[e 4—
p— a
—>
[e
Cr (random)

Proof Systems from Fiat-Shamir

Prover a Verifier
Cl (random)
— —
— dy
T
-—
e
| CH» (random)
W @ — @
Public Private : l
 Statement ;. Witness Gy |
e [
Accept /

Reject

Proof Systems from Fiat-Shamir

Prover a Verifier
Cl (random) N
e ¢t——— || || | s mmmmmm==- RN .
[o] a T | e Ly L7
— o
- 0>
— . .
| C2 (random) ~ Flat-ShamII‘
Public Private : l
 Statement ;. Witness Uy
- 0>
Accept /

Reject

Proof Systems from Fiat-Shamir

H
Prover a Verifier V
Cl (random) N
e ¢t——— || || | s mmmmmm==- RN .
[o] a T | e Ly L7
—) o
- - >
— . .
| C2 (random) ~ Flat-ShamII‘
. @ — ®) X
Public Private : l l
Laement A Nmess L Gy s = f
R : : :
Accept / : : Accept /
Reject 6 = Ry, -0 ay); Reject

Proof Systems from Fiat-Shamir

Prover a Verifier

—
)
| C» (random)
GNP L
Public Private : l

Statement > Witness

B
llllllllllllllllllllllllllllllllll

Accept /
Reject

Security:

Fiat-Shamir

X

l

Accept /
Reject

Proof Systems from Fiat-Shamir

H
Prover a Verifier V
Cl (random) N
e ¢t——— || || | s mmmmmm==- ' ~“~~
[o] az R L L L 0 Le”
—) o
_— >
— . .
| C2 (random) ~ Flat-ShamII‘
®.W @ —— ® X
Public Private : l l
 Starement & Witmess, G s = f
Accept / . Accept /
Reject 6 = Ry, -0 ay); Reject

...

. 3
. 3
. .
. %o
o .
. o .
o £
g .
Q .
g .
0 LS
D .
D .

D .

.

.

.
.
-
.
u
u

Soundness: If x has no w, then V rejects. ¢

*
’’’’
s .
nnnn
.......
--

Proof Systems from Fiat-Shamir

H
Prover a, Verifier V
Cl (random)
e ¢t——— || || | s mmmmmm==- RN .
[o] a) R L L L 0 Le”
E—) o
- - >
E— . .
| C2 (random) ~ Flat-ShamII‘
. @ — ®) X
Public Private : l l
Leement A WS L Gy :
Accept / Accept /
Reject -.C”_H(al”an) Reject

Security:

Soundness: If x has no w, then V rejects.

Knowledge Soundness: If V accepts, then

P* must “"know” w.

Proof Systems from Fiat-Shamir

H
Prover a, Verifier V
Cl (random)
e ¢t——— || || | s mmmmmm==- RN .
[o] a) R L L L 0 Le”
E—) o
- - >
E— . .
| C2 (random) ~ Flat-ShamII‘
. @ — ®) X
Public Private : l l
Leement A WS L Gy :
Accept / Accept /
Reject -.C”_H(al”an) Reject

Security: v/

Soundness: If x has no w, then V rejects. ‘/

Knowledge Soundness: If V accepts, then

P* must “"know” w.

Proof Systems from Fiat-Shamir

H
Prover a, Verifier V
Cl (random)
e ¢t——— || || | s mmmmmm==- RN .
[o] a) R L L L 0 Le”
E—) o
- - >
E— . .
| C2 (random) ~ Flat-ShamII‘
. @ — ®) X
Public Private : l l
Leement A WS L Gy :
Accept / Accept /
Reject -.C”_H(al”an) Reject

Security: v/

Soundness: If x has no w, then V rejects. ‘/

Knowledge Soundness: If V accepts, then

P* must “"know” w.

Strong Fiat-Shamir for Adaptive Security

.
]

H
Prover a Verifier P V
C d —
| 4& _______________ : “~~ T = (a19a29“‘7an+1)
L O] az ________________ e s
— R
— . o
®,@ Cy (random) @ Fiat-Shamir X. W .
bl private z | |
. Jtatement ;. Witness Gy
Accept / Accept /
Reject Reject
Security:

Soundness: If x has no w, then V rejects.

Knowledge Soundness: If V accepts, then

P* must “"know” w.

Strong Fiat-Shamir for Adaptive Security

H
Prover a Verifier P V
C1 (random) B
— — o . 7= (g gy ooy Gy)
o] a2 R LR 1 '¢'
I'
—_
e °
). (v Cy (random) Fiat-Shamir
DO e g)
Public Private“."‘; : l l
Leement A Wimess S Gy
Accept / Accept /
reject Reject

Security:

Soundness: If x has no w, then V rejects.

Knowledge Soundness: If V accepts, then

P* must “know” w. Compute 7 and x

*..simultaneously

0..
.

o
o*
- .

- .
.......
--

Strong Fiat-Shamir for Adaptive Security

Prover a Verifier \/ P \Y;

e
_ ® ® : IIIIIIIIIIIIIIIIIIIIIIIII
W C (random) ~ Fiat-Shamir 3 Derive
DO o g .
TP : : Cl — H(X, al) »
. Statement = Witness : a : ;
e ——— e g n+1 - : -
Accept / : Accept /
Reject G T a); Reject

Security:

Soundness: If x has no w, then V rejects.

Knowledge Soundness: If V accepts, then

P* must “know” w. Compute 7 and x

*..simultaneously

0..
.

o
o*
- .

d .

--

Strong Fiat-Shamir for Adaptive Security

Prover a Verifier \/ P \Y;

e
_ ® ® : IIIIIIIIIIIIIIIIIIIIIIIII
W C (random) ~ Fiat-Shamir 3 Derive
DO o g .
TP : : Cl — H(X, al) »
. Statement = Witness : a : ;
e ——— e g n+1 - : -
Accept / : Accept /
Reject G T a); Reject

Security: v/

Soundness: If x has no w, then V rejects. ‘/

P* must “know” w. Compute 7 and x

*..simultaneously

‘e
‘e
.

Knowledge Soundness: If V accepts, then

o
o*
.

d .

--

Weak Fiat-Shamir and Attacks

H
Prover a Verifier P V
_
C1 (random) B
— — o . 7= (g gy ooy Gy)
o] a2 R LR 1 '¢'
I'
—_
e °
). (v Cy (random) Fiat-Shamir
DO e g)
Public Private“."‘; : l l
Leement A Wimess S Gy
Accept / Accept /
reject Reject

Security:

Soundness: If x has no w, then V rejects.

Knowledge Soundness: If V accepts, then

P* must “know” w. Compute 7 and x

*..simultaneously

0..
.

o
o*
- .

- .
.......
--

Weak Fiat-Shamir and Attacks

H
Prover a Verifier . V
_—
Cl (random) Weak
Y ¢t——— || || | seeeeememmmm==- RN .
o] a) L L L L 0 Le”
— P
_—
— . .]
. C2 (random) ~ Flat-ShamII‘ -
©@ @ @— ® 5 x
7 Public ¥ Private : l l
Statement [Witness |Gy i
Accept / : . Accept /
Reject .C” . H(al’ e .’.fl?.).- Reject

Security:

Soundness: If x has no w, then V rejects.

Knowledge Soundness: If V accepts, then

P* must “know” w. Compute 7 and x

*..simultaneously

0..
.

o
o*
- .

d .

--

Weak Fiat-Shamir and Attacks

H
. i
Simple 2.-Protocols . \Y;
Weak ~
Fiat-Shamir
X
ccept / : cce
“Refee G =H@,. a0y

Security:
X

Soundness: If x has no w, then V rejects.

Knowledge Soundness: If V accepts, then x

P* must “know” w. Compute 7 and x

*..simultaneously

0..
.

o
o*
- .

d .

--

Weak Fiat-Shamir and Attacks

H
Simple 2.-Protocols Y,
r=(a;,ay,0,.1)
. sy x
: = H(a,) :
c, = H(ay, a,) l
ic, = H(a.l, ,a,) AI;:C.ep’i/
How not to Prove Yourself: | s ejec

Pitfalls of the Fiat-Shamir Heuristic and
Applications to Helios

David Bernhard!, Olivier Pereira®, and Bogdan Warinschi'

How not to prove your election outcome

. Compute 7 and x
*..simultaneously

0..
.

o
o*
- .

Thomas Haines*, Sarah Jamie Lewis', Olivier Pereira*, and Vanessa Teague§

d .

--

Weak Fiat-Shamir and Attacks

H
. i
Simple 2.-Protocols . \Y;
Weak ~
Fiat-Shamir
X
ccept / : cce
“Refee G =H@,. a0y

Security:
X

Soundness: If x has no w, then V rejects.

Knowledge Soundness: If V accepts, then x

P* must “know” w. Compute 7 and x

*..simultaneously

0..
.

o
o*
- .

d .

--

Weak Fiat-Shamir and Attacks

H
S|mp|e Z-Protocols ! MOdern PrOOf S!Stems
Weak ~
oTTITTTIIooors (e.g. Bulletproofs, Plonk, Spartan)
Fiat-Shamir
ccept / E cce
“Rejec =Ha.)

Security: x / D Y P a—

Soundness: If x has no w, then V rejects. ¢ (¢ P*)

Knowledge Soundness: If V accepts, then x/ * ’b """"""""

P* must “"know” w.

Weak Fiat-Shamir and Attacks

H
Simple 2.-Protocols ! Modern Proof Systems
Weak ~
(e.g. Schnorr, Girault, Chaum-Pedersen)| *-------------- : (e.g. Bulletproofs, Plonk, Spartan)
Fiat-Shamir 7
@

. State rrrerere— ,

.. o PAAS—— - “n+1 N &

1. Are there Weak Fiat-Shamir Attacks against Modern Proof Systems?

%* 1 1 :
P* must “know” w. . Compute 7 and x

“..simultaneously

0..
.

o
o*
- .

d .

--

Weak Fiat-Shamir and Attacks

H
Simple 2.-Protocols ! Modern Proof Systems
Weak
(e.g. Schnorr, Girault, Chaum-Pedersen)| *-------------- : (e.g. Bulletproofs, Plonk, Spartan)
Fiat-Shamir 7

: @

. State — , _

R R o “n+1 N @ . .

1. Are there Weak Fiat-Shamir Attacks against Modern Proof Systems?
2. Do Modern-Day Systems Implement Weak Fiat-Shamir?

%* 1 1 :
P* must “know” w. . Compute 7 and x

0..
.

o
o*
“, .*
.....
-
--

Weak Fiat-Shamir and Attacks

H
Simple 2.-Protocols ! Modern Proof Systems
Weak
(e.g. Schnorr, Girault, Chaum-Pedersen)| *-------------- : (e.g. Bulletproofs, Plonk, Spartan)
Fiat-Shamir 7

: @

. State — , _

R R o “n+1 N g . .

1. Are there Weak Fiat-Shamir Attacks against Modern Proof Systems?
2. Do Modern-Day Systems Implement Weak Fiat-Shamir?

3. How Severe are Weak Fiat-Shamir Vulnerabilities?

%* 1 1 :
P* must “know” w. . Compute 7 and x

0..
.

o
o
,,,,,,

..

Our Contributions

Our Contributions

1. Comprehensive Survey of 75+ open-source implementations:

—> 36 weak F-S vulnerabilities across 12 different proof systems.

Our Contributions

1. Comprehensive Survey of 75+ open-source implementations:

—> 36 weak F-S vulnerabilities across 12 different proof systems.

Proof System Codebase Weak F-S? Proof System Codebase Weak F-S?
bp-go [87] v anoma-plonkup [6] v
bulletproof-js [2] v gnark [17] e
simple-bulletproof-js [83] v dusk-network [31] e
BulletproofSwift [20] v snarkjs [50] e
python-bulletproofs [78] v ZK-Garage [97] e
adjoint-bulletproofs [3] v Plonk [37] plonky [67] X
zkSen [98] v ckb-zkp [81] X
incognito-chain [51] e halo2 [93] X
encoins-bulletproofs [33] e ol-labs [71] X
Bulletproofs [22] ZenGo-X [96] /e Jellyfish {34] X
zkrp [52] e matter-labs [62] X
ckb-zkp [81] e aztec-connect [8] X
bulletproofsrb [21] e OxProject [1] v
monero [68] X Chia [69] v
dalek-bulletproofs [29] X Wesolowski’s Harmony [47] 4
secp256k1-zkp [75] X VDF [90] POA Network [70] v
bulletproofs-ocaml [74] X IOTA Ledger [54] v
tari-project [85] X master-thesis-ELTE [48] v
Litec.oin [59] X Hyrax [89] ckb-zkp [81] e
Grin [44] X hyraxZK [49] X
Bul}etproofs dalek-bulletproofs [29] e Spartan [82] Spartan [64] Ve
variant [40] cpp-lwevss [60] X ckb-zkp [81] e
ebfull-sonic [18] v Libra [91] ckb-zkp [81] Jé
Sonic [61] .lx-sonic. [58] v Brakedown [43] Brakedown [19] v
10ohk-sonic [53] X Nova [57] Nova [63] e
adjoint-sonic [4] X Gemini [16] arkworks-gemini [38] e
Schnorr [79] noknow-python [7] v Girault [42] zk-paillier [95] Ve

Our Contributions

1. Comprehensive Survey of 75+ open-source implementations:

—> 36 weak F-S vulnerabilities across 12 different proof systems.

Our Contributions

1. Comprehensive Survey of 75+ open-source implementations:

—> 36 weak F-S vulnerabilities across 12 different proof systems.

2. Explicit Attacks against Bulletproofs, Plonk, Spartan, and Wesolowski’s VDF:

—> Provably break adaptive (knowledge) soundness.

Our Contributions

1. Comprehensive Survey of 75+ open-source implementations:

—> 36 weak F-S vulnerabilities across 12 different proof systems.

2. Explicit Attacks against Bulletproofs, Plonk, Spartan, and Wesolowski’s VDEF:

—> Provably break adaptive (knowledge) soundness.

3. Case Studies of Practical Impacts:

—> Unlimited currency minting in two separate blockchain protocols

Our Contributions

1. Comprehensive Survey of 75+ open-source implementations:

—> 36 weak F-S vulnerabilities across 12 different proof systems.

2. Explicit Attacks against Bulletproofs, Plonk, Spartan, and Wesolowski’s VDEF:

—> Provably break adaptive (knowledge) soundness.

3. Case Studies of Practical Impacts:

—> Unlimited currency minting in two separate blockchain protocols

4. Discussion & Takeaways for Academics & Practitioners.

Our Contributions

1. Comprehensive Survey of 75+ open-source implementations:

—> 36 weak F-S vulnerabilities across 12 ditferent proof systems.

Ion Spartan, and Wesolowski’s VDEF:

2. Explicit Attacks against 4

—> Provably break adaptive (knowledge) soundness.

of Practical Impacts:

3(Case Studies)

—> Unlimited currency minting in two separate blockchain protocols

tfor Academics & Practitioners.

4 (Discussion)&JTakeaways;

Weak Fiat-Shamir Attacks

(as easy as solving a linear equation)

Plonk - Protocol Description

Plonk - Protocol Description

Constraint System:

Plonk - Protocol Description

e

Constraint System:

Plonk - Protocol Description

“‘-Illlll....
* *
* *
: “
[. °
» -
] a
n n
n n
1 -
™]
n L}
] n
- [] n
. L
P ¥
x .0
0.. “‘
Ang nn?®

Constraint System:

Plonk - Protocol Description

“‘-llllll....
* *
* *
: ‘
~ . °
n a
] a
n n
n n
1 n
™ n
n L}
] n
- - In
Py LJ
. ¥
$’ .’
0.. “‘
amn an®

Constraint System:

-

e Gate Vectors: a=(3,2,w,), b= 2w;,w;), c¢=w,,w;10)

Plonk - Protocol Description

“‘-llllll....
* *
* *
: ‘
~ . °
n a
] a
n n
n n
1 n
™ n
n L}
] n
- - In
Py LJ
. ¥
$’ .’
0.. “‘
amn an®

Constraint System:

-

e Gate Vectors: a=(32,w,), b= 2w,w;), c¢=(w,w;10)

Plonk - Protocol Description

“‘-llllll....
* *
* *
: ‘
~ . °
n a
] a
n n
n n
1 n
™ n
n L}
] n
- - In
Py LJ
. ¥
$’ .’
0.. “‘
amn an®

Constraint System:

-

e Gate Vectors: a=(32,w,), b= 2w,w;), c¢=(w,w;10)

® Gate ConStraintS: C_l)l + bl — El’ 6_1)2 X bz — 62, 6_1)3 X 1_7)3 — 83

Plonk - Protocol Description

“‘-Illlll....
* *
* *
: “
~ . °
» -
] a
n n
n n
1 -
™]
n L}
] n
- - n
Py L
. ¥
x .’
0.. “‘
Ang nn?®

Constraint System:

-

e Gate Vectors: a=(32,w,), b= 2w,w;), c¢=(w,w;10)

® Gate ConStraintS: C_l)l + bl — El’ 6_1)2 X bz — 62, 6_1)3 X 1_7)3 — 83

e Consistency Constraints: d, =b,, dy=¢;, by=2,

Plonk - Protocol Description

“‘-llllll....
* *
* *
: ‘
~ . °
n a
] a
n n
n n
1 n
™ n
n L}
] n
™) L]
Py LJ I l
. ¥
$’ .’
0.. “‘
amn an®

Constraint System:

-

e Gate Vectors: a=(32,w,), b= 2w,w;), c¢=(w,w;10)

® Gate ConStraintS: C_l)l + bl — El’ 6_1)2 X bz — 62, 6_1)3 X b3 — 83

e Consistency Constraints: d,=b,, a;=c¢,, by;=¢,

Verification Equation:

Plonk - Protocol Description

“‘-Illlll....
* *
* *
: “
~ . °
» -
n a
] n
n n
1 -
n]
™ L}
n n
- - n
Py L
. ¥
x .’
0.. “‘
Ang nn?®

Constraint System:

-

e Gate Vectors: da = (3,2,w2), b = (2,W1, w3),
e Gate Constraints: d, +b, =&y, d,Xb, =&,

e Consistency Constraints: Eiz b, 673 = 51,

Verification Equation:

PI({) + Eq({) + a-Per(Q) +a’- (z({) — DLi() = Zy©) - ()

Plonk - Protocol Description

“‘|llllll....
* *
* *
: ‘
~ . °
n a
n a
] n
n n
1 n
n n
™ L}
n n
™ L]
Py LJ I l
. ¥
$’ .’
0.. “‘
amn an®

Constraint System:

-

e Gate Vectors: da = (3,2,w2), b = (2,W1, w3),
e Gate Constraints: d, +b, =&y, d,Xb, =&,

e Consistency Constraints: Eiz b, 673 = 51,

Verification Equation:

PI({) + Eq({) + a-Per(Q) +a’- (z({) — DLi() = Zy©) - ()

—_]
Gate Check

Plonk - Protocol Description

“‘-Illlll....
* *
* *
: “
~ . °
» -
n a
] n
n n
1 -
n]
™ L}
n n
- - n
Py L
. ¥
x .’
0.. “‘
Ang nn?®

Constraint System:

e Gate Vectors: da = (3,2,w2), 1; — (2,W1, w3),
e Gate Constraints: d, +b, =&y, d,Xb, =&,

-
- - -

e Consistency Constraints: a, =b,, a;=cy,

Verification Equation:

PI({) + Eq({) + a-Per(Q) +a’- (z({) — DLi() = Zy©) - ()

_ -]

Gate Check Consistency Check

Plonk - Protocol Description

“‘-Illlll....
* *
* *
: “
~ . °
» -
] a
n n
n n
1 -
™]
n L}
] n
- - n
Py L
. ¥
x .’
0.. “‘
Ang nn?®

Constraint System:

-

e Gate Vectors: a=(32,w,), b= 2w,w;), c¢=(w,w;10)

® Gate ConStraintS: C_l)l + bl — El’ 6_1)2 X bz — 62, 6_1)3 X b3 — 83

e Consistency Constraints: d,=b,, a;=c¢,, by;=¢,

Verification Equation:

PI({) + Eq({) + a-Per(Q) +a’- (z({) — DLi() = Zy©) - ()

_ -] e —

Gate Check Consistency Check Vanishing Domain

Plonk - Protocol Description

“‘-Illlll....
* *
* *
: “
~ . °
» -
n a
] n
n n
1 -
n]
™ L}
n n
- - n
Py L
. ¥
x .’
0.. “‘
Ang nn?®

Constraint System:
e Gate Vectors: da = (3,2,w2), 1; — (2,W1, w3),
e Gate Constraints: d, +b, =&y, d,Xb, =&,

e Consistency Constraints: Eiz b, 673 = 51,

Verification Equation:

Batching Challenge Evaluation Point

4 O\

PI({) + Eq({) + @- Per(() +a*- (z({) — DL () = Zy(©) - ()

_
e —

Gate Check Consistency Check Vanishing Domain

Plonk - Protocol Description

“‘-Illlll....
* *
* *
: “
~ . °
» -
] a
n n
n n
1 -
™]
n L}
] L |
- []
Py L
. ¥
x .’
0.. “‘
Ang nn?®

Constraint System:

\

e Gate Vectors: a=(32,w,), b= 2w,w;), c¢=(w,w;10)

e Gate Constraints: a,+b, =c¢,, a,X 132 =C,, dyX by =0y

Batching Challenge Evaluation Point

:’ZPI O \ / N\

....................... PIQ)+Eq) + @- Per(() + a*- (z(0) — DLi(O) = Zy(©) - t(0)

—
Gate Check Consistency Check Vanishing Domain

Plonk - Protocol Description

“‘-Illlll....
* *
* *
: “
~ . °
» -
n a
] n
n n
1 -
n]
™ L}
n L |
- []
Py L
. ¥
x .’
0.. “‘
Ang nn?®

Constraint System:

-

e Gate Vectors: a=(32,w,), b= 2w,w;), c¢=(w,w;10)

e Gate Constraints: a,+b, =c¢,, a,X 132 =C,, dyX by =0y

e Consistency Constraints: d,=b,, a;=c¢,, by;=¢,

Verification Equation:

Batching Challenge Evaluation Point

Y PLLO) N 4 »

L= / L IPIOHEQ) + @ Per() +a? - (2(0) = DL(©) = Zy(©) - 1)

e —

(Fixed) Scalars Gate Check Consistency Check Vanishing Domain

Plonk - Weak Fiat-Shamir Attack

Verification Equation:

Z PL - Lic) \ |
e /‘ A PIOHEQ) + a-Per(Q) +a” - (z(0) = DLi(Q) = Zy(©) - ()

(Fixed) Scalars Gate Check Consistency Check Vanishing Domain

Plonk - Weak Fiat-Shamir Attack

Verification Equation:

Z PL - Lic) \ |
e /‘ A PIOHEQ) + a-Per(Q) +a” - (z(0) = DLi(Q) = Zy(©) - ()

(Fixed) Scalars Gate Check Consistency Check Vanishing Domain

Weak F-S Attack: When PI is not part of hash computation (for deriving a, {)

Plonk - Weak Fiat-Shamir Attack

Verification Equation:

Z PL - Lic) \ |
e /‘ A PIOHEQ) + a-Per(Q) +a” - (z(0) = DLi(Q) = Zy(©) - ()

(Fixed) Scalars Gate Check Consistency Check Vanishing Domain

Weak F-S Attack: When PI is not part of hash computation (for deriving a, {)

1. Select arbitrary polynomials for the proof = compute all evaluations except PI({).

Plonk - Weak Fiat-Shamir Attack

Verification Equation:

Z PL - Lic) \ |
sl / S APIOHEQE) + a-Per() +a” - (z() — DL(O) = Zy(©) - t(&)

(Fixed) Scalars Gate Check Consistency Check Vanishing Domain

Weak F-S Attack: When PI is not part of hash computation (for deriving a, {)

1. Select arbitrary polynomials for the proof = compute all evaluations except PI({).

Plonk - Weak Fiat-Shamir Attack

Verification Equation:

Z PL - Lic) \ |
sl / S APIOHEQE) + a-Per() +a” - (z() — DL(O) = Zy(©) - t(&)

(Fixed) Scalars Gate Check Consistency Check Vanishing Domain

Weak F-S Attack: When PI is not part of hash computation (for deriving a, {)

1. Select arbitrary polynomials for the proof = compute all evaluations except PI({).

2. Solve for the public values PI = (PIy, ..., PI;) that will pass verification.

Plonk - Weak Fiat-Shamir Attack

Verification Eq uation:

4/ Lmear Equatlon
Z PT, -(L(0) \ \

il / 4 PIQHEQQ) + a-PerQ) +a®- (2() = DLy(Q) = Zy(©) - ()

(Fixed) Scalars Gate Check Consistency Check Vanishing Domain

Weak F-S Attack: When PI is not part of hash computation (for deriving a, {)

1. Select arbitrary polynomials for the proof = compute all evaluations except PI({).

2. Solve for the public values PI = (PIy, ..., PI;) that will pass verification.

Plonk - Weak Fiat-Shamir Attack

Verification Eq uation:

4/ Lmear Equatlon
Z PT, -(L(0) \ \

il / 4 PIQHEQQ) + a-PerQ) +a®- (2() = DLy(Q) = Zy(©) - ()

(Fixed) Scalars Gate Check Consistency Check Vanishing Domain

Weak F-S Attack: When PI is not part of hash computation (for deriving a, {)

1. Select arbitrary polynomials for the proof = compute all evaluations except PI({).

2. Solve for the public values PI = (PIy, ..., PI;) that will pass verification.

In Contrast: For strong Fiat-Shamir, changing PI will also change «, C.

Plonk - Weak Fiat-Shamir Attack

Verification Eq uation:

4/ Lmear Equatlon
Z PT, -(L(0) \ \

il / 4 PIQHEQQ) + a-PerQ) +a®- (2() = DLy(Q) = Zy(©) - ()

(Fixed) Scalars Gate Check Consistency Check Vanishing Domain

Weak F-S Attack: When PI is not part of hash computation (for deriving a, {)

1. Select arbitrary polynomials for the proof = compute all evaluations except PI({).

2. Solve for the public values PI = (PIy, ..., PI;) that will pass verification.

Degrees of freedom: can set all but one PI; to be arbitrary.

In Contrast: For strong Fiat-Shamir, changing PI will also change «, C.

Bulletproofs - Protocol Description

Bulletproofs - Protocol Description

Aggregate Range Proof Relation:

o Vi=ghthn, ...V = g'mh'n

* vi,...,v, €0, 2" —1]

Bulletproofs - Protocol Description

A, S
Aggregate Range Proof Relation: P . Vv
E— e
* Vi, ..., v, € [0, 2" — 1] — X

ll
L 4

* .

Aggregate Range Proof Relation:

o Vi=ghthn, ...V = g'mh'n

* vi,...,v, €0, 2" —1]

Note: 7, = g"h”, T, = g2 h”> in an honest proof

(with ¢,, /i, 5, p, known by P)

Bulletproofs - Protocol Description

ll
L 4

* .

Aggregate Range Proof Relation:

o Vi=ghthn, ...V = g'mh'n

* vi,...,v, €0, 2" —1]

Note: 7, = g"h”, T, = g2 h”> in an honest proof

(with ¢,, /i, 5, p, known by P)

Verification:

Bulletproofs - Protocol Description

ll
L 4

* .

Aggregate Range Proof Relation:

o Vi=ghthn, ...V = g'mh'n

* vi,...,v, €0, 2" —1]

Note: 7, = g"h”, T, = g2 h”> in an honest proof

(with ¢,, /i, 5, p, known by P)

Verification: V...V =g W .

Bulletproofs - Protocol Description

ll
L 4

* .

Bulletproofs - Protocol Description

Aggregate Range Proof Relation: > A': '
o Vi, =g"hh, ...,V = g'nhin ,) TT:TQ
* vi,...,v, €0, 2" —1] — :
Note: 7, = g h”1, T, = g2 h”> in an honest proof _ Bher

ll
L 4

(with ¢,, /i, 5, p, known by P)

* .

Verification: Ve . VT =g W . g—5(y,z) L T7% Tz—x2

Bulletproofs - Protocol Description

Aggregate Range Proof Relation: > A': '
o Vi=gth, ..V, =gmhi f) TT:TQ
* vi,....,v, €0,2" —1] — —x’
Note: 7|, = g"'h"1, T, = g h”> in an honest proof _her |
(with ¢, B, t,, 5, known by P) ch;:tt:\ngtupA)
Verification: VlZ2 c VmZm+1 — g? WP g—5(y,z) L Tx Tz_x2

V122+ +szm+1 — f—é(y,z)_tlx_t2x2

Exponents of g, A :
2 1)

Bulletproofs - Protocol Description

Aggregate Range Proof Relation: > A': '
P TS = =3 TT:TQ
* vi,....,v, €0,2" —1] — —x’
Note: 7|, = g"'h"1, T, = g h”> in an honest proof _her |
(with ¢, B, t,, 5, known by P) ch;:tt:\ngtupA)
Verification: VlZ2 c VmZm+1 — g? WP g—5(y,z) L Tx Tz_x2

V122+ +szm+1 — f—é(y,z)_tlx_t2x2

Exponents of g, A :
2 1)

Bulletproofs - Weak Fiat-Shamir Attack

Aggregate Range Proof Relation: P

o V, =gWhtv, ...,V = g'whln ’ : T,
p— S

* Vv, ..

Lv. €[0,2" — 1]} —

A, S
Y> < \4

ll
L 4

* .

Vet .+ 2" =1 —8(y,2) =t x — 1, x*

) 1)
Y1327+ ... +7’mZm+ =p.—P1Xx—Prx

Aggregate Range Proof Relation: P

o V, =gWhtv, ...,V = g'whln ’ : T,
p— S

* Vi, ..., v, € [0, 2" — 1] —

Weak F-S Attack: When V, ...,V are not hashed

Bulletproofs - Weak Fiat-Shamir Attack

A, S
Y> < \4

ll
L 4

* .

Vet .+ 2" =1 —8(y,2) =t x — 1, x*

) 1)
Y1327+ ... +7’mZm+ =p.—P1Xx—Prx

Aggregate Range Proof Relation: P

o V, =gWhtv, ...,V = g'whln ’ : T,
p— S

* Vi, ..., v, € [0, 2" — 1] —

Weak F-S Attack: When V, ...,V are not hashed

1. Compute P’s messages using an arbitrary witness:

e Set T, = g"h”\, T, = g"h”> for arbitrary t,, t,, B, /.

Bulletproofs - Weak Fiat-Shamir Attack

A, S
Y> < \4

ll
L 4

* .

Vet .+ 2" =1 —8(y,2) =t x — 1, x*

) 1)
Y1327+ ... +7’mZm+ =p.—P1Xx—Prx

Bulletproofs - Weak Fiat-Shamir Attack

A, S
Aggregate Range Proof Relation: P . Vv
— e —
* Vi, ..., v, € [0, 2" — 1] — X
T
N

Weak F-S Attack: When V, ...,V are not hashed

1. Compute P’s messages using an arbitrary witness:

e Set T, = g"h”\, T, = g"h”> for arbitrary t,, t,, B, /.

2. Solve forvy, ..

SV Vs -5 ¥y that satisty (1).

Vet .+ 2" =1 —8(y,2) =t x — 1, x*

) 1)
Y1327+ ... +7’mZm+ =p.—P1Xx—Prx

ll
L 4

* .

(1)

Practical Impacts

(printing money on blockchains for fun and profit)

Practical Impacts

(printing money on blockchains for fun and profit)

_— We didn’t do this!

Practical Impacts

(printing money on blockchains for fun and profit)

_— We didn’t do this!

(but others might have...

Practical Impacts

(printing money on blockchains for fun and profit)

\/ We didn’t do this!

(but others might have...
...and we wouldn’t know!)

Case Study: Dusk Network

Case Study: Dusk Network

Market cap $42 646,372
#375

Regulated And Decentralized Finance. (as of August 18, 2023)

Case Study: Dusk Network

Transaction Model (simplified):

Market cap $42 646,372
#375

Regulated And Decentralized Finance. (as of August 18, 2023)

Case Study: Dusk Network

Transaction Model (simplified):

Regulated And Decentralized Finance.

Market cap

Existing Coins

$42,646,372
#375

(as of August 18, 2023)

Case Study: Dusk Network

Transaction Model (simplified):

Regulated And Decentralized Finance.

Market cap

Existing Coins

$42,646,372
#375

(as of August 18, 2023)

Case Study: Dusk Network

..........................

W W) N l.0.)...

Transaction Model (simplified): |Inputs N”"S

Regulated And Decentralized Finance.

Market cap

Existing Coins

$42,646,372
#375

(as of August 18, 2023)

Case Study: Dusk Network

..........................

................... ol 3

Transaction Model (simplified): Inputs; N”"S

Public Inputs:

e Set of inputs & output coins

e Nullitier null; for each input / Existing Coins

Market cap $42 646,372
#375

Regulated And Decentralized Finance. (as of August 18, 2023)

Case Study: Dusk Network

..........................

................... ol 3

Transaction Model (simplified): Inputs; N”"S

Public Inputs:

e Set of inputs & output coins

e Nullifier null; for each input /

Existing Coins

Case Study: Dusk Network

..........................

................... ol 3

Transaction Model (simplified): Inputs; N”"S

Public Inputs:

e Set of inputs & output coins

e Nullitier null; for each input / Existing Coins

Proof Relation: (proved using Plonk)

* Nullifier check: null; = H(pk, pos,), V input [
v € [0,2°% — 1], V input & output

e Equality check: Z Vv, = Z Vout

* Merkle membership: / is in position pos, w.r.t root rt

e Range check: v.

Case Study: Dusk Network

..........................

................... ol 3

Transaction Model (simplified): Inputs; N”"S

Public Inputs:

e Set of inputs & output coins

e Nullitier null; for each input / Existing Coins

Weak F-S Attack:

Proof Relation: (proved using Plonk)

* Nullifier check: null; = H(pk, pos,), V input [
v € [0,2°% — 1], V input & output

e Equality check: Z Vv, = Z Vout

* Merkle membership: / is in position pos, w.r.t root rt

e Range check: v.

Case Study: Dusk Network

................... ol 3

Transaction Model (simplified): Inputs N”"S

Public Inputs:

e Set of inputs & output coins

e Nullifier null; for each input /

Existing Coins

Weak F-S Attack:

Proof Relation: (proved using Plonk)

* Nullifier check: null; = H(pk, pos,), V input [
v € 10,2 — 1], V input & output

e Equality check: Z Vv, = Z Vout

* Merkle membership: / is in position pos, w.r.t root rt

e Range check: v.

Case Study: Dusk Network

..........................

................... ol 3

Transaction Model (simplified): Inputs; N”"S

Public Inputs:

e Set of inputs & output coins

e Nullitier null; for each input / Existing Coins

Weak F-S Attack:

e Nullifier check: nul

 Range check: v, — 1], Vinput & output

in’ OI/tf

e Equality check:

ut

e Merkle members osition pos, w.r.t root rt

Case Study: Dusk Network

..........................

................... (... :
g_Inputs NuIIs

Transaction Model (simplified):

Public Inputs:

e Set of inputs & output coins

e Nullitier null; for each input / Existing Coins

Weak F-S Attack:

. 1. Create output coin w/ value
PV input / 1 trillion DUSK.

— 1], V input & output

e Nullifier check: nul

* Range check: v, ,v |

e Equality check:

ut

e Merkle members osition pos, w.r.t root rt

Case Study: Dusk Network

..........................

................... (... :
g_Inputs NuIIs

Transaction Model (simplified):

Public Inputs:

e Set of inputs & output coins

e Nullifier null; for each input /

Existing Coins

Weak F-S Attack:

. 1. Create output coin w/ value
PV input / 1 trillion DUSK.

— 1], Vinput & output 5

e Nullifier check: nul

* Range check: v, ,v |

. Forge Plonk proof = w/ arbitrary

o Equality check: input, setting nullitier to satisty z.

ut

e Merkle members osition pos, w.r.t root rt

Case Study: Dusk Network

..........................

................... (... :
g_Inputs NuIIs

Transaction Model (simplified):

Public Inputs:

e Set of inputs & output coins

e Nullifier null; for each input /

Existing Coins

Weak F-S Attack:

. 1. Create output coin w/ value
PV input / 1 trillion DUSK.

— 1], Vinput & output 5

e Nullifier check: nul

* Range check: v, ,v |

. Forge Plonk proof = w/ arbitrary

o Equality check: input, setting nullitier to satisty z.

ut

-

W

e Merkle members osition pos, w.r.t root rt

Case Study: Dusk Network

Disclosure Timeline:

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof 7 w/ arbitrary

input, setting nullitier to satisty z.

-

W

Case Study: Dusk Network

Disclosure Timeline:

March 18

-t

Vulnerability
disclosed

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof 7 w/ arbitrary

input, setting nullitier to satisty z.

-

‘@'

Case Study: Dusk Network

Disclosure Timeline:

March 18 March 22

—f—f—— 2022

Vulnerability Testnet
disclosed launched

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof 7 w/ arbitrary

input, setting nullitier to satisty z.

-

‘@'

Case Study: Dusk Network

Disclosure Timeline:

March 18 March 22 April 5

N T—
Vulnerability Testnet Patch

disclosed launched proposed

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof 7 w/ arbitrary

input, setting nullitier to satisty z.

-

‘@'

Case Study: Dusk Network

Disclosure Timeline:

March 18 March 22 April 5 April 11
Vulnerability Testnet Patch Patch

disclosed launched proposed deployed
Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof 7 w/ arbitrary

input, setting nullitier to satisty z.

-

‘@'

Case Study: Dusk Network

Disclosure Timeline:

March 18

Vulnerability
disclosed

March 22

Testnet
launched

April 5

Patch
proposed

April 11

Patch
deployed

Apr 12, 2022 - Mels Dees

PLONK Ciritical Vulnerabillity
Successfully Remediated

Weak F-S Attack:

1. Create output coin w/ value
1 trillion DUSK.

2. Forge Plonk proof 7 w/ arbitrary

input, setting nullitier to satisty z.

-

W

Case Study: Dusk Network

Apr 12, 2022 - Mels Dees

PLONK Ciritical Vulnerabillity

Disclosure Timeline:

March 18 March 22 April 5 April 11 Successfully Remediated
Vulnerability Testnet Patch Patch

disclosed launched proposed deployed
Weak F-S Attack:

Was this attack exploited? .
1. Create output coin w/ value

1 trillion DUSK.

2. Forge Plonk proof 7 w/ arbitrary

input, setting nullitier to satisty z.

-

W

Case Study: Dusk Network

Apr 12, 2022 - Mels Dees

PLONK Ciritical Vulnerabillity

Disclosure Timeline:

March 18 March 22 April 5 April 11 Successfully Remediated
Vulnerability Testnet Patch Patch

disclosed launched proposed deployed
Weak F-S Attack:

Was this attack exploited?

1. Create output coin w/ value
e Unlikely given short timeline... 1 trillion DUSK.

2. Forge Plonk proof 7 w/ arbitrary

input, setting nullitier to satisty z.

-

W

Case Study: Dusk Network

Apr 12, 2022 - Mels Dees

PLONK Ciritical Vulnerabillity

Disclosure Timeline:

March 18 March 22 April 5 April 11 Successfully Remediated
Vulnerability Testnet Patch Patch

disclosed launched proposed deployed
Weak F-S Attack:

Was this attack exploited?

1. Create output coin w/ value
e Unlikely given short timeline... 1 trillion DUSK.

* But cannot be ruled out! 2. Forge Plonk proof 7 w/ arbitrary

input, setting nullitier to satisty z.

-

‘@'

Case Study: Dusk Network

Apr 12, 2022 - Mels Dees

PLONK Ciritical Vulnerability

Disclosure Timeline:

March 18 March 22 April 5 April 11 Successfully Remediated
Vulnerability Testnet Patch Patch

disclosed launched proposed deployed
Weak F-S Attack:

Was this attack exploited?

1. Create output coin w/ value
e Unlikely given short timeline... 1 trillion DUSK.

* But cannot be ruled out! 2. Forge Plonk proof 7 w/ arbitrary

* Forged proofs are indistinguishable from input, setting nullitier to satisty z.
honest proofs

-

‘@'

Case Study: Incognito Chain

Case Study: Incognito Chain

Description: The privacy layer of crypto

Case Study: Incognito Chain

Description: The privacy layer of crypto

$250M+ +6M 100+ 16

Volume shielded Anonymous transactions Coins supported Bridges supported

Ethereum B Ethereum N B Ethereum B Ethereum
Block Block Block Block

S ETH 2ETH

& Ethereum SGEGUY &
v - Block - Block - v

]
000 00

INCOGNITO SIDECHAIN

3

Exit

ncognito Mode
_______ [l Incognito NN [Incognito
Block Block
P -
((®)
\ <7

Case Study: Incognito Chain

Description: The privacy layer of crypto

Case Study: Incognito Chain

Description: The privacy layer of crypto

Proof Relation:

e Equality check: Z Vv, = Z Vout

e Range check: v, ,v € [0,2° — 1],V input & output

Case Study: Incognito Chain

Description: The privacy layer of crypto

Proof Relation:

e Equality check: Z Vin = Z Vout <= enforced by (linkable) ring signature

e Range check: v, ,v € [0,2° — 1],V input & output

Case Study: Incognito Chain

Description: The privacy layer of crypto

Proof Relation:

e Equality check: Z Vin = Z Vout <= enforced by (linkable) ring signature

e Range check: v, ,v € [0,2° — 1],V input & output <= enforced by BP aggregate
range proofs

Case Study: Incognito Chain

Description: The privacy layer of crypto

Proof Relation:

e Equality check: Z Vin = Z Vout <= enforced by (linkable) ring signature

e Range check: v, ,v € [0,2° — 1],V input & output <= enforced by BP aggregate
range proofs

Weak F-S Attack:

Case Study: Incognito Chain

Description: The privacy layer of crypto

Proof Relation:

e Equality check: Z Vin = Z Vout <= enforced by (linkable) ring signature

 Range check: v, ,v . €x264 — 1], Vinput & output <= enforce P aggregate
range proof

Weak F-S Attack:

Case Study: Incognito Chain

Description: The privacy layer of crypto

Proof Relation:

e Equality check: Z Vin = Z Vout <= enforced by (linkable) ring signature

 Range check: v, ,v . €x264 — 1], Vinput & output <= enforce P aggregate
range proof

Weak F-S Attack:

>

e Choose V.,V " to satisfy

in° “out
equality check as well as

BP verification equation

Case Study: Incognito Chain

Description: The privacy layer of crypto

Proof Relation:

e Equality check: Z Vin = Z Vout <= enforced by (linkable) ring signature

 Range check: v, ,v . €x264 — 1], Vinput & output <= enforce P aggregate
range proof

Weak F-S Attack:

>
in>° “out

to satisfy
equality check as well as #

BP verification equation

e Choose V...V

Case Study: Incognito Chain

Description: The privacy layer of crypto

Proof Relation:

e Equality check: Z Vin = Z Vout <= enforced by (linkable) ring signature

 Range check: v, ,v . €x264 — 1], Vinput & output <= enforce P aggregate
range proof

Weak F-S Attack:

) Vi =V, T+ V31T Vy

e Choose V. ',V _~ to satisfy
’ q 2 3 4 5_ %)
: % % % % =t—o0(v,2))—thhx—1L X
equality check as well as 12T VT T V32T Vg2 (y,2) — 1 2
3

BP verification equation V1 z° + V2< T V3 2t + V4 > = Py —D1x— P, x°

(input v; and outputs v,, v3, v,)

Case Study: Incognito Chain

Description: The privacy layer of crypto

Proof Relation:

e Equality check: Z Vin = Z Vout <= enforced by (linkable) ring signature

e Range check: v, ,v . €x264 — 1], Vinput & output <= enforce P aggregate
range proof

Weak F-S Attack:

e Choose v, ,v__ to satisfy @=@+@+ -
equality check as well as # @Z +@Z +@Z +.Z =1—6(y,2) — ;X — 1, x°

BP verification equation }’12 T }’22 T 7’32 T }’42 =p,— D1 x— ﬁzx

(input v; and outputs v,, v3, v,)

Case Study: Incognito Chain

Description: The privacy layer of crypto

Proof Relation:

e Equality check: Z Vin = Z Vout <= enforced by (linkable) ring signature
e Range check: v, ,v . €x264 — 1], Vinput & output <= enforce P aggregate
range proof

Weak F-S Attack: 1 PRY Y

e Choose v, ,v__ to satisfy @=@+@+
equality check as well as # @Z +@Z +@Z +.Z =1—6(y,2) — ;X — 1, x°

BP verification equation }’12 T }’22 T 7’32 T }’42 =p,— D1 x— ﬁzx

(input v; and outputs v,, v3, v,)

Case Study: Incognito Chain

Description: The privacy layer of crypto

Proof Relation:

e Equality check: Z Vin = Z Vout <= enforced by (linkable) ring signature
e Range check: v, ,v . €x264 — 1], Vinput & output <= enforce P aggregate
range proof

1 PRV
Weak F-S Attack: Y N
—)+ _|_ 1 bazillion PRV!
+ Choose 7= 7 (V)= +(0y+(0s)

" to satisfy
equality check as well as # @Z +@Z +@Z +.Z =1—08(y,2) —) x — b x°

BP verification equation }’12 T }’22 T 7’32 T }’42 =p,— D1 x— ,Bzx

(input v; and outputs v,, v3, v,)

Case Study: Incognito Chain

Description: The privacy layer of crypto

Proof Relation:

e Equality check: Z Vin = Z Vout <= enforced by (linkable) ring signature
e Range check: v, ,v . €x264 — 1], Vinput & output <= enforce P aggregate
range proof

1 PRV
Weak F-S Attack: Y N
—)+ _|_ 1 bazillion PRV!
+ Choose 7= 7 B=0)+0)+@

" to satisfy
equality check as well as # @Z +@Z +@Z +.Z =1—08(y,2) —) x — b x°

BP verification equation }’12 T }’22 T 7’32 T }’42 =p,— D1 x— ,Bzx

(input v; and outputs v,, v3, v,)

Case Study: Incognito Chain

Disclosure Timeline:

1 PRV —
@—@+@+‘/\ 1 bazillion PRV!

@Z +@Z +@Z +.z =1—06(y,z) —t;jx — b x*

}’12 “7’22 “7’32 “7’42 =p,— D1 x— ﬁzx

(input v; and outputs v,, v3, v,)

Case Study: Incognito Chain

Disclosure Timeline:

April 25

—|— 2023

Vuln.
disclosed

1 PRV —
@—@+@+‘/\ 1 bazillion PRV!

@Z +@Z +@Z +.z =1—06(y,z) —t;jx — b x*

}’12 “7’22 “7’32 “}’42 =p,— D1 x— ﬁzx

(input v; and outputs v,, v3, v,)

Case Study: Incognito Chain

Disclosure Timeline:

April 25 April 26

—|_|— 2023

Vuln. Patch
disclosed proposed

@ =0)+0)+ @ 1 bazillion PRV!
@Z +@Z +@Z +.z =1—06(y,z) —t;jx — b x*

}’12 “7’22 “7’32 “}’42 =p,— D1 x— ﬁzx

(input v; and outputs v,, v3, v,)

Case Study: Incognito Chain

Disclosure Timeline:

What Happened?
Aprll 25 Apl"ll 26 May 1 A few days ago, the group Trall of Bits (), @ security

research company, contacted us to inform they have identified an issue in our

| | | 2023 bulletproof implementation, that we use with our privacy layer.

We have patched the issue with Docker tag 20230429 _1, the fix has been reviewed
VUII’]. PatCh PatCh and confirmed by the Trail of Bits team.

disclosed proposed deployed

1 PRV
—\.:@+@+.‘/\1 bazillion PRV!

Qz +@z +@z +.z =1—6(y,2) —t; x — t, x*

7’12 '7’22 T V3<% “}’42 =p,— D1 x— ﬁzx

(input v; and outputs v,, v3, v,)

Case Study: Incognito Chain

Disclosure Timeline:

What Happened?

Nov 2019 Apnl 25 Apr|| 26 May 1 A few days ago, the group Trail of Bits (), a security

research company, contacted us to inform they have identified an issue in our

| | | | 2023 bulletproof implementation, that we use with our privacy layer.

We have patched the issue with Docker tag 20230429 _1, the fix has been reviewed
Mainnet VUII’]. PatCh PatCh and confirmed by the Trail of Bits team.

launched disclosed proposed deployed

1 PRV
—\.:@+@+.‘/\1 bazillion PRV!

0 +@z +@z +.z = 7= 8(y,2) — fyx — 1 X

Z
7’12 '7’22 T V3<% “}’42 =p,— D1 x— ﬁzx

(input v; and outputs v,, v3, v,)

Case Study: Incognito Chain

Disclosure Timeline:

What Happened?
Nov 201 Q 4 yea rs! Apl’ll 25 API’II 26 May 1 A few days ago, the group Trail of Bits (), a security

research company, contacted us to inform they have identified an issue in our

2023 bulletproof implementation, that we use with our privacy layer.

We have patched the issue with Docker tag 20230429 _1, the fix has been reviewed
Mainnet VUII’]. PatCh PatCh and confirmed by the Trail of Bits team.

launched disclosed proposed deployed

1 PRV
—\.:@+@+.‘/\1 bazillion PRV!

Qz +@z +@z +.z =1—6(y,2) —t; x — t, x*

7’12 '7’22 T V3<% “}’42 =p,— D1 x— ﬁzx

(input v; and outputs v,, v3, v,)

Case Study: Incognito Chain

Disclosure Timeline:

What Happened?
Nov 201 Q 4 yea rs! Apl’ll 25 Apl"ll 26 May 1 A few days ago, the group Trail of Bits (), a security

research company, contacted us to inform they have identified an issue in our

2023 bulletproof implementation, that we use with our privacy layer.

We have patched the issue with Docker tag 20230429 _1, the fix has been reviewed
Mainnet VUII’]. PatCh PatCh and confirmed by the Trail of Bits team.

launched disclosed proposed deployed

Was this attack exploited? 1 PRV e

.:@+@+.‘/\1 bazillion PRV!
+@Z +@Z +.z =1—06(y,z) —t;jx — b x*

'7’22 T V3% “}’42 =p,— D1 x— ﬁzx

e As with Plonk, forged BP proofs are
indistinguishable from honest proofs QZ
/1 z°

e So we don't know...

(input v; and outputs v,, v3, v,)

Why is Weak F-S so widespread?

(do practitioners know about the dangers of weak F-5?)

Insufficient Coverage of “correct” Fiat-Shamir

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

Removing interaction. Our construction can be made non-interactive in the random oracle model using
Fiat—Shamir heuristic [28]. Though GKR protocol is not constant round, recent results |14, 22| show that

as well. Finally, public-coin interactive arguments may be cryptographically compiled into
SNARKSs using the Fiat-Shamir transform.

subsequent step, the argument can be made non-interactive via the Fiat—Shamir transformation, and thereby

' ' NARG with uni 1 SRS. I . hat 1]
obtain a preprocessing S G with universal SRS lenges are random field elements.
We apply the Fiat—Shamir heuristic to the protocol from Section 5 to obtain a Fiat-Shamir heuristic would be applied in order to obtain a non-

non-interactive argument of knowledge that is secure in the random oracle model

The above SNARK 1is obtained via a popular paradigm that combines a polynomial IOP and a polynomial

Hyrax-1 is a public-coin protocol, we apply the Fiat-Shamir commitment scheme in order to obtain an interactive argument, and then relies on the Fiat—Shamir paradigm
heuristic [45] to produce a zZkKSNARK that we call Hyrax whose

Finally, since our protocol is public coin, it can be made non-interactive in the
random oracle model using the Fiat-Shamir transform|[55], thereby obtaining a family

be made non-interactive in the random oracle model using the Fiat-Shamir
transform [F'S86|, and be instantiated (heuristically) in the plain model using a

witness-extended emulation. Applying the Fiat-Shamir transform [F'S86] to the public-coin interactive
argument results in the claimed SNARK for RRlCSlH

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specity Fiat-Shamir:

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specity Fiat-Shamir:

— (some) does not get it right on the first try!

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specity Fiat-Shamir:

— (some) does not get it right on the first try!

Plonk:

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?
1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specity Fiat-Shamir:

— (some) does not get it right on the first try!

Compute quotient challenge o« € IF¥,, :
Plonk: P > P

(December 2019)
o = H(|a]y,[bl1,]c]1, [2]1)

We describe the protocol below as a non-interactive protocol using the Fiat-Shamir
hueristic. For this purpose we always denote by transcript the concatenation of the
common preprocessed input, and public input, and the proof elements written by the
prover up to a certain point in time. We use transcript for obtaining random challenges via

(March 2020)

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specity Fiat-Shamir:

— (some) does not get it right on the first try!

Plonk:

Bulletproofs:

Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.
2. Attempt to specity Fiat-Shamir:

— (some) does not get it right on the first try!

Plonk:

challenges are replaced by hashes of the transcript up to that point. For instance y = H(A,.S) and
2 = H(A,S.v) (JUIy 2018)

Bulletproofs: l

random challenges are replaced by hashes of the transcript up to that point, including the statement (Aoril 202 2)
itself. For example, one could set y = H(st, A,.S) and z = H(A, S, vy), where st is the statement. Pri

How to prevent weak Fiat-Shamir?

How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S

How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S

| Merlin: composable proof transcripts for public-coin arguments of
| knowledge

Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It
automates the Fiat-Shamir transform, so that by using Merlin, non-interactive protocols
can be implemented as if they were interactive.

This is significantly easier and less error-prone than performing the transformation by
hand, and in addition, it also provides natural support for:

e multi-round protocols with alternating commit and challenge phases;

e natural domain separation, ensuring challenges are bound to the statements to be
proved;

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols.

How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S Dusk Network patch (April 2022)

Merlin: composable proof transcripts for public-coin arguments of use merlin::Transcript;
knowledge

// PIs-have-to-be-part-of-the-transcript

Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It for pi in public_inputs.iter() {
automates the Fiat-Shamir transform, so that by using Merlin, non-interactive protocols
can be implemented as if they were interactive.

cloned_transcript.append_scalar(b"pi", pi);

This is significantly easier and less error-prone than performing the transformation by
hand, and in addition, it also provides natural support for:

e multi-round protocols with alternating commit and challenge phases;

e natural domain separation, ensuring challenges are bound to the statements to be
proved;

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols.

How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S

| Merlin: composable proof transcripts for public-coin arguments of
| knowledge

Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It
automates the Fiat-Shamir transform, so that by using Merlin, non-interactive protocols
can be implemented as if they were interactive.

This is significantly easier and less error-prone than performing the transformation by
hand, and in addition, it also provides natural support for:

e multi-round protocols with alternating commit and challenge phases;

e natural domain separation, ensuring challenges are bound to the statements to be
proved;

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols.

How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S Mitigation Idea:

Merlin: composable proof transcripts for public-coin arguments of
knowledge

Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It
automates the Fiat-Shamir transform, so that by using Merlin, non-interactive protocols
can be implemented as if they were interactive.

This is significantly easier and less error-prone than performing the transformation by .
hand, and in addition, it also provides natural support for: DeteCtIO N Id ea.

e multi-round protocols with alternating commit and challenge phases;

e natural domain separation, ensuring challenges are bound to the statements to be
proved;

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols.

How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S Mitigation Idea:

Merlin: composable proof transcripts for public-coin arguments of * Declare (tO Merlln) PrOtOCOl flow
 knowledge ahead of time

Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It

automates the Fiat-Shamir transform, so that by using Merlin, non-interactive protocols ¢ Raise ﬂ dg |f L h IS IS NOt fOI |Owed

can be implemented as if they were interactive.

This is significantly easier and less error-prone than performing the transformation by .
hand, and in addition, it also provides natural support for: DeteCtIO n Id ea.

e multi-round protocols with alternating commit and challenge phases;

e natural domain separation, ensuring challenges are bound to the statements to be
proved;

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols.

How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S

Merlin: composable proof transcripts for public-coin arguments of
| knowledge

Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It
automates the Fiat-Shamir transform, so that by using Merlin, non-interactive protocols
can be implemented as if they were interactive.

This is significantly easier and less error-prone than performing the transformation by
hand, and in addition, it also provides natural support for:

e multi-round protocols with alternating commit and challenge phases;

e natural domain separation, ensuring challenges are bound to the statements to be
proved;

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols.

Mitigation Idea:

e Declare (to Merlin) protocol flow
ahead of time

e Raise flag if this is not followed

Detection Idea:

* Transcript should contain all

objects flowed through both P & V

* |f not, raise flag (w/ some error)

How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S Mitigation Idea:

Merlin: composable proof transcripts for public-coin arguments of * Declare (tO Merlln) PrOtOCOl flow
knowledge ahead of time

Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It
automates the Fiat-Shamir transform, so that by using Merlin, non-interactive protocols ¢ Raise ﬂ dg |f L h IS IS NOt fOI |Owed

can be implemented as if they were interactive.

B This is significantly easier and less error-prone than performing the transformation by .
hand, and in addition, it also provides natural support for: Detection Id ea.

e multi-round protocols with alternating commit and challenge phases;

* Transcript should contain all

e natural domain separation, ensuring challenges are bound to the statements to be

proved; objects flowed through both P & V

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols. ® |f N Ot, ra | se fI a g (W/ some erro r)

Long-term: Standardization of Fiat-Shamir " ZKPROOF /KDocs

Summary

Never (ever, even) implement weak Fiat-Shamir in practice!

Summary

Never (ever, even) implement weak Fiat-Shamir in practice!

 Hash everything (it's not that expensive anyway)

Summary

Never (ever, even) implement weak Fiat-Shamir in practice!

 Hash everything (it's not that expensive anyway)

For Academics: Specify the correct Fiat-Shamir transform!

Summary

Never (ever, even) implement weak Fiat-Shamir in practice!

 Hash everything (it's not that expensive anyway)

For Academics: Specify the correct Fiat-Shamir transform!

Read our paper
\ (ePrint 2023/691)

i[n]

vulnerable.
vulnerable.
vulnerable.

youre all

vulnerable.

T AN
=8 [none of
you are
free of

E [|
The people were IRl

ASTONISHED at his doctrine. Th a N k YO U !

weak F-S

