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Was this attack exploited?


• As with Plonk, forged BP proofs are 
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Practical Impacts

Weak Fiat-Shamir Attacks

(do practitioners know about the dangers of weak F-S?)
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Never (,ever, ever) implement weak Fiat-Shamir in practice!

• Hash everything (it’s not that expensive anyway)

For Academics: Specify the correct Fiat-Shamir transform!

Thank You!

Read our paper 
(ePrint 2023/691)


