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Verification Eq uation:

4/ Lmear Equatlon
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il / 4 PIQHEQQ) + a-PerQ) +a®- (2() = DLy(Q) = Zy(©) - ()

(Fixed) Scalars Gate Check Consistency Check Vanishing Domain

Weak F-S Attack: When PI is not part of hash computation (for deriving a, {)

1. Select arbitrary polynomials for the proof = compute all evaluations except PI({).

2. Solve for the public values PI = (PIy, ..., PI;) that will pass verification.

Degrees of freedom: can set all but one PI; to be arbitrary.

In Contrast: For strong Fiat-Shamir, changing PI will also change «, C.
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\/ We didn’t do this!
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Apr 12, 2022 - Mels Dees

PLONK Ciritical Vulnerability

Disclosure Timeline:

March 18 March 22 April 5 April 11 Successfully Remediated
Vulnerability  Testnet Patch Patch

disclosed  launched proposed deployed
Weak F-S Attack:

Was this attack exploited?

1. Create output coin w/ value
e Unlikely given short timeline... 1 trillion DUSK.

* But cannot be ruled out! 2. Forge Plonk proof 7 w/ arbitrary

* Forged proofs are indistinguishable from input, setting nullitier to satisty z.
honest proofs
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Disclosure Timeline:

What Happened?
Aprll 25 Apl"ll 26 May 1 A few days ago, the group Trall of Bits ( ), @ security

research company, contacted us to inform they have identified an issue in our

| | | 2023 bulletproof implementation, that we use with our privacy layer.

We have patched the issue with Docker tag 20230429 _1, the fix has been reviewed
VUII’]. PatCh PatCh and confirmed by the Trail of Bits team.
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Case Study: Incognito Chain

Disclosure Timeline:

What Happened?

Nov 2019 Apnl 25 Apr|| 26 May 1 A few days ago, the group Trail of Bits ( ), a security

research company, contacted us to inform they have identified an issue in our

| | | | 2023 bulletproof implementation, that we use with our privacy layer.

We have patched the issue with Docker tag 20230429 _1, the fix has been reviewed
Mainnet VUII’]. PatCh PatCh and confirmed by the Trail of Bits team.
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What Happened?
Nov 201 Q 4 yea rs! Apl’ll 25 API’II 26 May 1 A few days ago, the group Trail of Bits ( ), a security

research company, contacted us to inform they have identified an issue in our

2023 bulletproof implementation, that we use with our privacy layer.

We have patched the issue with Docker tag 20230429 _1, the fix has been reviewed
Mainnet VUII’]. PatCh PatCh and confirmed by the Trail of Bits team.
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Case Study: Incognito Chain

Disclosure Timeline:

What Happened?
Nov 201 Q 4 yea rs! Apl’ll 25 Apl"ll 26 May 1 A few days ago, the group Trail of Bits ( ), a security

research company, contacted us to inform they have identified an issue in our

2023 bulletproof implementation, that we use with our privacy layer.

We have patched the issue with Docker tag 20230429 _1, the fix has been reviewed
Mainnet VUII’]. PatCh PatCh and confirmed by the Trail of Bits team.

launched disclosed proposed deployed

Was this attack exploited? 1 PRV e
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e As with Plonk, forged BP proofs are
indistinguishable from honest proofs QZ
/1 z°

e So we don't know...
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Why is Weak F-S so widespread?

(do practitioners know about the dangers of weak F-5?)



Insufficient Coverage of “correct” Fiat-Shamir



Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?




Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.



Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

Removing interaction. Our construction can be made non-interactive in the random oracle model using
Fiat—Shamir heuristic [28]. Though GKR protocol is not constant round, recent results |14, 22| show that

as well. Finally, public-coin interactive arguments may be cryptographically compiled into
SNARKSs using the Fiat-Shamir transform.

subsequent step, the argument can be made non-interactive via the Fiat—Shamir transformation, and thereby

' ' NARG with uni 1 SRS. I . hat 1]
obtain a preprocessing S G with universal SRS lenges are random field elements.
We apply the Fiat—Shamir heuristic to the protocol from Section 5 to obtain a Fiat-Shamir heuristic would be applied in order to obtain a non-

non-interactive argument of knowledge that is secure in the random oracle model

The above SNARK 1is obtained via a popular paradigm that combines a polynomial IOP and a polynomial

Hyrax-1 is a public-coin protocol, we apply the Fiat-Shamir commitment scheme in order to obtain an interactive argument, and then relies on the Fiat—Shamir paradigm
heuristic [45] to produce a zZkKSNARK that we call Hyrax whose

Finally, since our protocol is public coin, it can be made non-interactive in the
random oracle model using the Fiat-Shamir transform|[55], thereby obtaining a family

be made non-interactive in the random oracle model using the Fiat-Shamir
transform [F'S86|, and be instantiated (heuristically) in the plain model using a

witness-extended emulation. Applying the Fiat-Shamir transform [F'S86] to the public-coin interactive
argument results in the claimed SNARK for RRlCSlH
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How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specity Fiat-Shamir:

— (some) does not get it right on the first try!

Plonk:




Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?
1. Mention that Fiat-Shamir can be applied, with no specification for the transform.

2. Attempt to specity Fiat-Shamir:

— (some) does not get it right on the first try!

Compute quotient challenge o« € IF¥,, :
Plonk: P > P

(December 2019)
o = H(|a]y,[bl1,]c]1, [2]1)

We describe the protocol below as a non-interactive protocol using the Fiat-Shamir
hueristic. For this purpose we always denote by transcript the concatenation of the
common preprocessed input, and public input, and the proof elements written by the
prover up to a certain point in time. We use transcript for obtaining random challenges via

(March 2020)
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Insufficient Coverage of “correct” Fiat-Shamir

How is Fiat-Shamir presented in academic papers?

1. Mention that Fiat-Shamir can be applied, with no specification for the transform.
2. Attempt to specity Fiat-Shamir:

— (some) does not get it right on the first try!

Plonk:

challenges are replaced by hashes of the transcript up to that point. For instance y = H(A,.S) and
2 = H(A,S.v) (JUIy 2018)

Bulletproofs: l

random challenges are replaced by hashes of the transcript up to that point, including the statement ( Aoril 202 2)
itself. For example, one could set y = H(st, A,.S) and z = H(A, S, vy), where st is the statement. Pri
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Existing tooling does not prevent weak F-S

| Merlin: composable proof transcripts for public-coin arguments of
| knowledge

Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It
automates the Fiat-Shamir transform, so that by using Merlin, non-interactive protocols
can be implemented as if they were interactive.

This is significantly easier and less error-prone than performing the transformation by
hand, and in addition, it also provides natural support for:

e multi-round protocols with alternating commit and challenge phases;

e natural domain separation, ensuring challenges are bound to the statements to be
proved;

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols.



How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S Dusk Network patch (April 2022)

Merlin: composable proof transcripts for public-coin arguments of use merlin::Transcript;
knowledge

// PIs-have-to-be-part-of-the-transcript

Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It for pi in public_inputs.iter() {
automates the Fiat-Shamir transform, so that by using Merlin, non-interactive protocols
can be implemented as if they were interactive.

cloned_transcript.append_scalar(b"pi", pi);

This is significantly easier and less error-prone than performing the transformation by
hand, and in addition, it also provides natural support for:

e multi-round protocols with alternating commit and challenge phases;

e natural domain separation, ensuring challenges are bound to the statements to be
proved;

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols.
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Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It
automates the Fiat-Shamir transform, so that by using Merlin, non-interactive protocols
can be implemented as if they were interactive.

This is significantly easier and less error-prone than performing the transformation by .
hand, and in addition, it also provides natural support for: DeteCtIO N Id ea.

e multi-round protocols with alternating commit and challenge phases;

e natural domain separation, ensuring challenges are bound to the statements to be
proved;

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols.
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Existing tooling does not prevent weak F-S Mitigation Idea:

Merlin: composable proof transcripts for public-coin arguments of * Declare (tO Merlln) PrOtOCOl flow
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Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It
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can be implemented as if they were interactive.

This is significantly easier and less error-prone than performing the transformation by .
hand, and in addition, it also provides natural support for: DeteCtIO n Id ea.

e multi-round protocols with alternating commit and challenge phases;

e natural domain separation, ensuring challenges are bound to the statements to be
proved;

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols.



How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S

Merlin: composable proof transcripts for public-coin arguments of
| knowledge

Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It
automates the Fiat-Shamir transform, so that by using Merlin, non-interactive protocols
can be implemented as if they were interactive.

This is significantly easier and less error-prone than performing the transformation by
hand, and in addition, it also provides natural support for:

e multi-round protocols with alternating commit and challenge phases;

e natural domain separation, ensuring challenges are bound to the statements to be
proved;

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols.

Mitigation Idea:

e Declare (to Merlin) protocol flow
ahead of time

e Raise flag if this is not followed

Detection Idea:

* Transcript should contain all

objects flowed through both P & V

* |f not, raise flag (w/ some error)



How to prevent weak Fiat-Shamir?

Existing tooling does not prevent weak F-S Mitigation Idea:

Merlin: composable proof transcripts for public-coin arguments of * Declare (tO Merlln) PrOtOCOl flow
knowledge ahead of time

Merlin is a STROBE-based transcript construction for zero-knowledge proofs. It . . ..
automates the Fiat-Shamir transform, so that by using Merlin, non-interactive protocols ¢ Raise ﬂ dg |f L h IS IS NOt fOI |Owed

can be implemented as if they were interactive.

B This is significantly easier and less error-prone than performing the transformation by .
hand, and in addition, it also provides natural support for: Detection Id ea.

e multi-round protocols with alternating commit and challenge phases;

* Transcript should contain all

e natural domain separation, ensuring challenges are bound to the statements to be

proved; objects flowed through both P & V

e automatic message framing, preventing ambiguous encoding of commitment data;

e and protocol composition, by using a common transcript for multiple protocols. ® |f N Ot, ra | se fI a g (W/ some erro r)

Long-term: Standardization of Fiat-Shamir " ZKPROOF /KDocs
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Summary

Never (ever, even) implement weak Fiat-Shamir in practice!

 Hash everything (it's not that expensive anyway)

For Academics: Specify the correct Fiat-Shamir transform!

Read our paper
\ (ePrint 2023/691)
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