SALSA, PICANTE, and VERDE (spicy green salsa)

Machine Learning attacks on LWE with small sparse secrets

Kristin Lauter Director, FAIR Labs North America

Joint work with: Francois Charton*, Mingjie Chen, Evrard Garcelon, Cathy Li, Mohamed Malhou, Jana Sotakova, Emily Wenger, Zeyuan Allen-Zhu Meta Al

* combined author list from all papers, listed alphabetically

The race for post-quantum cryptography

- Full-scale quantum computers will break current public key encryption (RSA, ECC).
- NIST competition (2017-2022) standardized schemes for postquantum cryptography.

The culprit: a quantum computer

Lattice cryptography: a leading post-quantum candidate

• Lattice cryptography schemes are believed to be quantum and classically secure.

- Lattice schemes rely on the Learning With Errors (LWE) [Regev 04] hardness assumption: $b = a \cdot s + e \mod q$
- Classical attacks use lattice reduction (e.g. LLL, BKZ)

Could we use a different attack paradigm?

LWE parameters

Hardness of LWE depends on selection of parameters:

- n = dimension of lattice (e.g. n=256, 512, 1024)
- q = modulus
- e = error vector, sampled from Gaussian with std deviation σ
- s = secret vector, sampled from secret distribution
- m = # samples (a, b = a.s+e) attacker has access to

Examples where LWE is not hard:

• q is too large w.r.t. n: can use LLL polynomial time ($O^{(n^4)}$) algorithm to find s.

Examples of LWE in practice:

- NIST 2022 PQC standard:
 - Kyber 512, 768. RLWE with module structure, n=256, k = 2,3.
 - Log q =12
 - Binomial secret distribution (for k=2, s_i = -2,-1,0,1, or 2)
 - Small secret, but not sparse (e.g. ~37% zero bits)

Homomorphic Encryption Standard (HomomorphicEncryption.org 2018)

- Large dimension, n=1024, 2048, ... 2^{15}, 2^{16}
- Log q > 30 ...
- Binary, ternary, Gaussian, random secret distributions
- Small error, $\sigma \sim 3.2$
- Some small secret distributions are standardized
- Sparse secrets *not* in standard, but used in practice (h=64)

Classical attacks on LWE

- Standards set by estimating classical lattice reduction attacks
 - LLL, BKZ, fplll, BZK 2.0, ... [LLL, Schnorr, Stehle, Chen-Nguyen, ...]
 - Using LWE Estimator [Albrecht-Player-Scott 2015 ++]
- Concrete secret-recovery attacks: uSVP, decoding, dual
 - All work by using lattice reduction to find *the shortest vector* or a "short enough" vector
- BKZ improves LLL, increases *blocksize*, but exponential in *blocksize*

Could we use a different attack paradigm?

Use Machine Learning (ML) to attack LWE?

Learning with errors (LWE)

 $(\boldsymbol{a} \cdot \boldsymbol{s} + \boldsymbol{e}) \bmod \boldsymbol{q} = \boldsymbol{b}$

LWE attack goal

Given LWE samples $\{(a, b)\}$, recover s.

Key attack intuitions

I. LWE assumes learning from noisy data is hard;

but ML models are good at learning from noisy data!

- 2. LWE is like linear regression *but modulo q!*
- 3. ML models can do other math¹, *but not good at modular arithmetic*!

Our initial work: SALSA [WCCL NeurIPS 2022]

- ML-based attack on LWE with sparse binary secrets, e.g. $s \in [0,1]^N$
 - Uses transformer models
 - Models trained on LWE samples (\boldsymbol{a}, b) to predict b from \boldsymbol{a}
 - Develop cryptographic distinguishers which use the models as oracle
- SALSA (2022) recovers sparse binary secrets for small size LWE problems Secret-recovery Attacks on LWE via Sequence-to-sequence models with Attention

SALSA ingredients

 \bigcirc Transformer model \rightarrow train model on LWE samples

Secret recovery \checkmark \rightarrow extract secret prediction from model

 \bigcirc Secret verification \rightarrow check if secret is correct

SALSA performance

SALSA can successfully recover sparse, binary secrets for small LWE problems

- SALSA recovers secrets when model <u>starts</u> to learn
- High accuracy not needed for secret recovery

Model accuracy/loss on (R)LWE problems with Hamming weight 3 $_{10}$

Secret Distinguishers

- 3 distinguishers enable secret recovery from trained model F.
 - Direct
 - Distinguisher
 - Cross-attention [Picante]

High level distinguisher idea:

Let s_i be a bit in secret s and a_i corresponding coordinate of input a. Let a_c be a with constant c added to entry a_i

If $s_i = 0$ then $F(\mathbf{a}_c) \approx F(\mathbf{a})$,

where F is the model and c is a constant.

Key limitations of SALSA

- Significant data requirements (4 million LWE samples)
- Small dimension (best n=128)
- Low Hamming weight (best h=5)
- Binary secrets only

Our subsequent work, PICANTE and VERDE, addresses these limitations. Now, SALSA-like attacks are closer to attacking real-world systems.

SALSA, PICANTE, VERDE

Attack version	LWE samples required	Attackable <i>h</i> /density	Attackable dimension	Secret types recovered
SALSA [1]	4,000,000	$h \leq 5, d \leq 0.05$	$n \leq 128$	Binary
PICANTE [2]	4n	$h \leq 60, d \approx 0.2$	$n \leq 350$	Binary
VERDE [3]	4n	$h \leq 63, d \approx 0.1$	$n \leq 512$	Binary, Ternary, Gaussian*

[1] SALSA: Attacking Lattice Cryptography with Transformers, Wenger et al, NeurIPS 2022
[2] SALSA PICANTE: a machine learning attack on LWE with binary secrets, Li et al, 2023, under review
[3] SALSA VERDE: a machine learning attack on Learning with Errors with sparse small secrets, Li et al, 2023, under review

From 4,000,000 to 4n samples

PICANTE and VERDE run a novel *preprocessing* step to improve data efficiency.

$$\begin{array}{c} (\mathbf{a_{1}}, b_{1}) \\ (\mathbf{a_{2}}, b_{2}) \\ \vdots \\ (\mathbf{a_{4n}}, b_{4n}) \end{array} \longrightarrow \begin{bmatrix} \mathbf{a_{2}} \\ \mathbf{a_{3n-1}} \\ \mathbf{a_{2n+2}} \\ \mathbf{a_{n-1}} \\ \cdots \\ \mathbf{a_{4n-3}} \end{bmatrix} = \mathbf{A_{i}} \longrightarrow \mathbf{R_{BKZ}}\mathbf{A_{i}} \quad (\mathbf{R_{BKZ}}\mathbf{A_{i}}, \mathbf{R_{BKZ}}\mathbf{b_{i}}) \\ \begin{array}{c} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0$$

Reducing Standard deviation

Post-preprocessing, a coordinates have standard deviation smaller than uniform random.

Running BKZ with increasing strength reduces the standard deviation α of entries of vectors, making learning easier.

Increasing attackable h

NoMod results suggest range of attackable h based on training data property.

But note, distribution does not need to be centered at 0, it just needs to be concentrated!

Increasing attackable h

Theory result: σ of training data determines recoverable h.

- If $|\mathbf{x}| = \mathbf{a} \cdot \mathbf{s} \mathbf{b} < q/2$ is a normally distributed random variable, 68% of its values will be within one σ of the mean. This is also the observed NoMod success threshold. Thus, we want $\sigma_x < q/2$.
- If **s** is binary with Hamming weight **h** and entries of **a** have stdev σ_a , then $\sigma_x = \sqrt{h} \sigma_a + \sigma_e \approx \sqrt{h} \sigma_a$ (since σ_e is negligible).
- Therefore, s is recoverable if $\sqrt{h} \sigma_a < q/2$ or $\sigma_a = \frac{q}{2\sqrt{h}}$.
- This result highlights the importance of preprocessing: when σ_a is reduced by factor α , recoverable h increases by a factor of α^2 !

Recovering ternary secrets

Our novel two-bit distinguisher enables recovery of more complex secrets.

<u>High level idea</u>: Let s_i, s_j be bits in secret s and a_i, a_j be corresponding coordinates of input a.

If
$$s_i = s_j$$
 then $F(a_i + c) \approx F(a_j + c)$,

where F is the model and c is a constant.

Recovering ternary secrets

Detailed two-bit distinguisher method:

- First, identify nonzero secret bits using binary distinguisher.
- Compare nonzero bits pairwise using the $F(a_i + c)$ intuition.
- Partition nonzero bits into two cliques based on similarities/differences in observed $F(a_i + c)$ vs. $F(a_j + c)$.
- Set bits in one clique to 1 and the others to -1, check secret correctness.
- If correct, secret recovered! If not, continue training.

Scaling up dimension

We improve our choice of encoding base to attack larger dimensions.

- As modulus q increases, required transformer vocabulary size also increases.
- Transformers can't learn vocabularies with millions/billions of characters! Too complex!
- To reduce vocab size, we encode integers on two tokens, using base $B \geq \sqrt{q}$.
- When q is very large, we round the second bit using rounding token r, chosen so that vocabulary size $\frac{B}{r} < 10,000$.

Comparison with classical attacks

PICANTE and VERDE run faster than classical attacks but require more compute.

LWE parameters $\log_2 q$ h		VERDE attack time Preprocessing (hrs) Training T		Total (hrs)	uSVP attack time (hrs)
12	8	1.5	2 epochs	4.5	N/A
14	12	2.5	2-5 epochs	5.5-10	N/A
16	14	8.0	2 epochs	11	N/A
18	18	7.0	3 epochs	11.5	558
18	20	7.0	1-8 epochs	8.5-19	259
20	22	7.5	5 epochs	15	135-459
20	23	7.5	3-4 epochs	12-15	167-330
20	24	7.5	4 epochs	13.5	567
20	25	7.5	5 epochs	15	76 - 401

Comparison of Verde with concrete uSVP attack

n=256, binary secrets

Verde's preprocessing time assumes full parallelization.

Future directions

- Generalize to general (non-sparse) small secret distributions.
- Scale to smaller q

How?

- Improve models' ability to learn modular arithmetic.
- Decrease preprocessing compute/time requirements.
- Concentration methods for distribution

Thank you!

Questions?