SALSA, PICANTE, and VERDE

Machine Learning attacks on LWE with small sparse secrets

Kristin Lauter
Director; FAIR Labs North America

Joint work with: Francois Charton*, Mingjie Chen, Evrard Garcelon,
Cathy Li, Mohamed Malhou, Jana Sotakova, Emily Wenger, Zeyuan Allen-Zhu

O\ Meta Al

* combined author list from all papers, listed alphabetically

The race for post-quantum cryptography

* Full-scale quantum computers
will break current public key
encryption (RSA, ECCO).

ll

* NIST competition (2017-2022)
standardized schemes for post-
quantum cryptography.

Lattice cryptography: a leading post-quantum candidate

b1
* Lattice cryptography schemes are believed to v/'

be quantum and classically secure.

* L attice schemes rely on the Learning With Errors (LWE) [Regev 04]
hardness assumption:b = a-s + e mod g

* Classical attacks use lattice reduction (e.g. LLL, BKZ)

Could we use a different attack paradigm?

LWE parameters

Hardness of LWE depends on selection of parameters:

n = dimension of lattice (e.g. n=256, 512, 1024)

g = modulus
e = error vector, sampled from Gaussian with std deviation o

s = secret vector, sampled from secret distribution
m = # samples (a, b = a.s+e) attacker has access to

Examples where LWE is not hard:
e qistoo large w.r.t. n: can use LLL polynomial time (O~(n#)) algorithm to find s.

Examples of LWE In practice:

e NIST 2022 PQC standard:
* Kyber 512, 768. RLWE with module structure, n=256, k = 2,3.
* Logq=12
* Binomial secret distribution (for k=2, s, =-2,-1,0,1, or 2)
* Small secret, but not sparse (e.g. ~¥37% zero bits)

Homomorphic Encryption Standard (HomomorphicEncryption.org 2018)
e Large dimension, n=1024, 2048, ... 2*{15}, 2*{16}

Log g > 30 ...

Binary, ternary, Gaussian, random secret distributions

Small error, o ~ 3.2

Some small secret distributions are standardized

Sparse secrets not in standard, but used in practice (h=64)

Classical attacks on LWE

e Standards set by estimating classical lattice reduction attacks
e LLL, BKZ, fplll, BZK 2.0, ... [LLL, Schnorr, Stehle, Chen-Nguyen, ...]
e Using LWE Estimator [Albrecht-Player-Scott 2015 ++]

* Concrete secret-recovery attacks: uSVP, decoding, dual

* All work by using lattice reduction to find the shortest vector or a “short
enough” vector

* BKZ improves LLL, increases blocksize, but exponential in blocksize

Could we use a different attack paradigm?

Use Machine Learning (ML) to attack LVWE?

-

Y4
Learning with errors (LVVE)

LVVE attack goal

(a-s+e)modg=0>

AN

Given LWE samples {(a, b)}, recover s.

~

J

Key attack intuitions

|, LWE assumes learning from noisy data is hard;

but ML models are good at learming from noisy data!

LWE s like linear regression but modulo g

" e.g. Linear Algebra with Transformers, Charton, 2020

ML models can do other math!, but not good at modular arithmetic!

Our initial work: SALSA pwccL Neurips 2022]

* ML-based attack on LWE with sparse binary secrets, eg. s € [0,1]V
* Uses transformer models

* Models trained on LWE samples (a, b) to predict b from a
* Develop cryptographic distinguishers which use the models as oracle

* SALSA (2022) recovers sparse binary secrets for small size LWE problems

Secret-recovery Attacks on LWE via Sequence-to-sequence models with Attention

SALSA: Attacking Lattice Cryptography with Transformers, Wenger et al, NeurlPS 2022

SALSA ingredients

W Transformer model = train model on LWE samples
W Secret recovery J > extract secret prediction from model

@ Secret verification = check if secret is correct

SALSA performance

SALSA can successfully recover sparse, binary secrets for small LWE problems

Test Loss
 SALSA recovers secrets 5-50;?\
5.25
when model starts to learn 2 \
— 5.00 dimension n
= 3() 90
. 4.75 — 50 110 | | secret recovered!
* High accuracy not needed 4.50 —70 =128
for secret recove ry Test Accuracy
50 R
S o
PN
2 g»% =
< 0
0 5 10 15 20 25 30 35
Training Epoch

Model accuracy/loss on (R)LWE problems with Hamming weight 3 1o

Secret Distinguishers

3 distinguishers enable secret recovery from trained model F.
* Direct

e Disti

nguisher

* Cross-attention [Picante]

-

_

High level distinguisher idea:
Let s; be a bit in secret s and a; corresponding coordinate of input a.
Let a. be a with constant ¢ added to entry a;

If s; = 0then F(a,) = F(a),

where F Is the model and ¢ Is a constant.

~

/

Key limitations of SALSA

* Significant data requirements (4 million LWE samples)
* Small dimension (best n=128)
* Low Hamming weight (best h=5)

* Binary secrets only

Our subsequent work, PICANTE and VERDE, addresses these limitations.
Now, SALSA-like attacks are closer to attacking real-world systems.

SALSA, PICANTE,VERDE

Attack LWE samples Attackable Attackable Secret types
version required h/density dimension recovered
SALSA [1] 4,000,000 h<5,d<0.05 n <128 Binary
PICANTE [2] 4n h<60,d=02 n <350 Binary
VERDE [3] 4n h<63,d=01 n <512 Binary Ternary, Gaussian*

[1] SALSA: Attacking Lattice Cryptography with Transformers, Wenger et al, NeurlPS 2022
[2] SALSA PICANTE: a machine learning attack on LWE with binary secrets, Li et al, 2023, under review
[3] SALSA VERDE: a machine learning attack on Learning with Errors with sparse small secrets, Li et al, 2023, under review

From 4,000,000 to 4n samples

PICANTE and VERDE run a novel preprocessing step to improve data efficiency.

(a1, by) _aﬁag |

(ag, b2) N A R A.
. a,_1 T i BKZ 1

(@an: byn) a3

® 4n IWE @ Resample asto @ Reduce
samples make (4> matrices with BKZ

()

Reducing Standard deviation

Post-preprocessing, @ coordinates have standard deviation smaller than uniform random.

BKZ (0.99, 20)
BKZ (0.96, 20)
BKZ (0.96, 16)
No reduction

Running BKZ with increasing strength
reduces the standard deviation & of entries
of vectors, making learning easier.

Number of samples
n
o
o

10000 15000 20000 25000
Sample norm

legend = BKZ (delta, block size)

Increasing attackable h

NoMod results suggest range of attackable h based on training data property.

4 . ,)
NoMod = 9% of training data for which 35 Succeed?
— o . _ B True
. x| =a-s —b <q/2 30 me False
% training data not wrapped around modulus & 25
3 20
o
N V15
When NoMod > 67%, success is almost 10
guaranteed. Increasing h decreases NoMod, 5
since more a elements are used to compute b. 0
/ 04 05 06 0.7 0.8

Proportion of NoMod training data

But note, distribution does not need to be centered at 0, it just needs to be concentrated!

Increasing attackable h

Theory result: o of training data determines recoverable h.

If |x| =a:s —b < q/2isanormally distributed random variable, 68% of its values will be within
one ¢ of the mean. This is also the observed NoMod success threshold. Thus, we want g, < q/2.

If s is binary with Hamming weight h and entries of @ have stdev a,,then o, = Vh o, + 0, =+Vh
g, (since a, is negligible).

Therefore, s is recoverable if Vh o, < q/2 or o, = %.

This result highlights the importance of preprocessing: when g, is reduced by factor &, recoverable h
increases by a factor of a?!

Recovering ternary secrets

Our novel two-bit distinguisher enables recovery of more complex secrets.

/ High level idea: Let s;, s; be bits in secret s and a;, a; be \
corresponding coordinates of input a.

If s; = sj then F(a; + ¢) zF(aj+c),

\ where F Is the model and ¢ Is a constant. /

Recovering ternary secrets

Detailed two-bit distinguisher method:
* First, identify nonzero secret bits using binary distinguisher.
« Compare nonzero bits pairwise using the F(a; + ¢) intuition.

* Partition nonzero bits into two cliques based on similarities/differences in
observed F(a; + c) vs. F(aj + c).

* Set bits In one clique to 1 and the others to —1, check secret correctness.

* |f correct, secret recovered! If not, continue training.

Scaling up dimension
We improve our choice of encoding base to attack larger dimensions.

* As modulus g increases, required transformer vocabulary size also increases.
* Transformers can't learn vocabularies with millions/billions of characters! Too complex!
* Jo reduce vocab size, we encode Integers on two tokens, using base B = /9.

* When q is very large, we round the second bit using rounding token r, chosen so that
vocabulary size g < 10,000.

Comparison with classical attacks

PICANTE and VERDE run faster than classical attacks but require more compute.

LWE parameters VERDE attack time

log, g h Preprocessing (hrs) Training Total (hrs) uSVP attack time (hrs)
12 8 1.5 2 epochs 4.5 N/A
14 12 2.5 2-5 epochs 5.5-10 N/A
16 14 8.0 2 epochs 11 N/A
18 18 7.0 3 epochs 11.5 558
18 20 7.0 1-8 epochs 8.5-19 259
20 22 7.5 5 epochs 15 135-459
20 23 7.5 3-4 epochs 12-15 167-330
20 24 T2 4 epochs 135 567
20 p 7.5 5 epochs 15 76 - 401

Comparison of Verde with concrete uSVP attack
n=256, binary secrets
Verde's preprocessing time assumes full parallelization.

Future directions

* Generalize to general (non-sparse) small secret distributions.

* Scale to smaller g

How!?
* Improve models’ ability to learn modular arithmetic.

* Decrease preprocessing compute/time requirements.

e Concentration methods for distribution

Thank you!

