
SALSA, PICANTE, and VERDE
(spicy green salsa)

 Machine Learning attacks on LWE with small sparse secrets

Kristin Lauter
Director, FAIR Labs North America

Joint work with: Francois Charton*, Mingjie Chen, Evrard Garcelon,
Cathy Li, Mohamed Malhou, Jana Sotakova, Emily Wenger, Zeyuan Allen-Zhu

* combined author list from all papers, listed alphabetically

The race for post-quantum cryptography

• Full-scale quantum computers
will break current public key
encryption (RSA, ECC).

• NIST competition (2017-2022)
standardized schemes for post-
quantum cryptography.

2

The culprit: a quantum computer

Lattice cryptography: a leading post-quantum candidate

• Lattice cryptography schemes are believed to
be quantum and classically secure.

• Lattice schemes rely on the Learning With Errors (LWE) [Regev 04]
hardness assumption: 𝑏 = 𝒂 $ 𝒔 + 𝑒 mod 𝑞

• Classical attacks use lattice reduction (e.g. LLL, BKZ)

3

b
1

b
2

v

Could we use a different attack paradigm?

LWE parameters

Hardness of LWE depends on selection of parameters:

n = dimension of lattice (e.g. n=256, 512, 1024)
q = modulus
e = error vector, sampled from Gaussian with std deviation σ
s = secret vector, sampled from secret distribution
m = # samples (a, b = a.s+e) attacker has access to

Examples where LWE is not hard:
• q is too large w.r.t. n: can use LLL polynomial time (O~(n4)) algorithm to find s.

Examples of LWE in practice:
• NIST 2022 PQC standard:

• Kyber 512, 768. RLWE with module structure, n=256, k = 2,3.
• Log q =12
• Binomial secret distribution (for k=2, si = -2,-1,0,1, or 2)
• Small secret, but not sparse (e.g. ~37% zero bits)

Homomorphic Encryption Standard (HomomorphicEncryption.org 2018)
• Large dimension, n=1024, 2048, ... 2^{15}, 2^{16}
• Log q > 30 …
• Binary, ternary, Gaussian, random secret distributions
• Small error, σ ~ 3.2
• Some small secret distributions are standardized
• Sparse secrets not in standard, but used in practice (h=64)

Classical attacks on LWE

• Standards set by estimating classical lattice reduction attacks
• LLL, BKZ, fplll, BZK 2.0, … [LLL, Schnorr, Stehle, Chen-Nguyen, …]
• Using LWE Estimator [Albrecht-Player-Scott 2015 ++]

• Concrete secret-recovery attacks: uSVP, decoding, dual
• All work by using lattice reduction to find the shortest vector or a “short

enough” vector

• BKZ improves LLL, increases blocksize, but exponential in blocksize

Could we use a different attack paradigm?

Use Machine Learning (ML) to attack LWE?

Key attack intuitions
1. LWE assumes learning from noisy data is hard;
 but ML models are good at learning from noisy data!

2. LWE is like linear regression but modulo q!

3. ML models can do other math1, but not good at modular arithmetic!

7

Learning with errors (LWE)

(𝒂 $ 𝒔 + 𝑒) mod q	= 𝑏

LWE attack goal

Given LWE samples { 𝒂, 𝑏 }, recover 𝒔.

1 e.g. Linear Algebra with Transformers, Charton, 2020

Our initial work: SALSA [WCCL NeurIPS 2022]

• ML-based attack on LWE with sparse binary secrets, e.g. 𝑠	 ∈ 0,1 !

• Uses transformer models
• Models trained on LWE samples (𝒂, 𝑏) to predict 𝑏 from 𝒂
• Develop cryptographic distinguishers which use the models as oracle

• SALSA (2022) recovers sparse binary secrets for small size LWE problems
Secret-recovery AEacks on LWE via Sequence-to-sequence models with AEenMon

8
SALSA: Attacking Lattice Cryptography with Transformers, Wenger et al, NeurIPS 2022

SALSA ingredients

9

🧅 Transformer model

🫑 Secret recovery 🌶

🍅 Secret verification

à train model on LWE samples

à extract secret prediction from model

à check if secret is correct

SALSA performance

10

SALSA can successfully recover sparse, binary secrets for small LWE problems

• SALSA recovers secrets
when model starts to learn

• High accuracy not needed
for secret recovery

dimension n

Test Loss

Test Accuracy

Ac
cu

ra
cy

 (%
)

Lo
ss

Training Epoch
5 10 15 20 25 30 350

0

25

50

5.25
5.50

5.00
4.75
4.50

30
50
70

90
110
128

Model accuracy/loss on (R)LWE problems with Hamming weight 3

secret recovered!

Secret Distinguishers

3 distinguishers enable secret recovery from trained model F.
• Direct
• Distinguisher
• Cross-attention [Picante]

High level distinguisher idea:
Let 𝑠! 	be a bit in secret 𝒔 and 𝑎! 	corresponding coordinate of input	𝒂.

Let ac be a with constant c added to entry 𝑎! 	

 If 𝑠! = 0	then 𝐹 ac 	≈ 𝐹(𝒂),

where 𝐹 is the model and 𝑐 is a constant.

Key limitations of SALSA

12

• Significant data requirements (4 million LWE samples)
• Small dimension (best n=128)
• Low Hamming weight (best h=5)
• Binary secrets only

Our subsequent work, PICANTE and VERDE, addresses these limitations.
Now, SALSA-like attacks are closer to attacking real-world systems.

SALSA, PICANTE, VERDE

Attack
version

LWE samples
required

Attackable
ℎ/density

Attackable
dimension

Secret types
recovered

SALSA [1] 4,000,000 ℎ ≤ 5, 𝑑 ≤ 0.05	 𝑛	 ≤ 128 Binary
PICANTE [2] 4n ℎ ≤ 60, 𝑑 ≈ 0.2 𝑛	 ≤ 350 Binary
VERDE [3] 4n ℎ ≤ 63, 𝑑 ≈ 0.1 𝑛	 ≤ 512 Binary, Ternary, Gaussian*

[1] SALSA: Attacking Lattice Cryptography with Transformers, Wenger et al, NeurIPS 2022
[2] SALSA PICANTE: a machine learning attack on LWE with binary secrets, Li et al, 2023, under review
[3] SALSA VERDE: a machine learning attack on Learning with Errors with sparse small secrets, Li et al, 2023, under review

From 4,000,000 to 4n samples

PICANTE and VERDE run a novel preprocessing step to improve data efficiency.

If
 use 2-bit distinguisher

Data preparation Model training Secret recovery

Reduce
with BKZ

Distinguisher

4n LWE
samples

Train transformer on
BKZ-reduced samples

4 Run secret recovery
on trained model

5

After each
epoch

If , stop;
else, keep training

Resample to
matrices

1 2 3

...

make

or

Reducing Standard deviation

Post-preprocessing, 𝒂 coordinates have standard deviation smaller than uniform random.

Running BKZ with increasing strength
reduces the standard deviation 𝜶	of entries

of vectors, making learning easier.

Sample norm

BKZ
BKZ
BKZ
No reduction

N
um

be
r

of
 s

am
pl

es

3000

1000

1500

2000

2500

500

0
10000 15000 20000 25000

legend = BKZ (delta, block size)

Increasing attackable ℎ
NoMod results suggest range of attackable ℎ based on training data property.

NoMod = % of training data for which
x = a 5 s	 − b	 < q/2

% training data not wrapped around modulus

Proportion of NoMod training data

When NoMod > 67%, success is almost
guaranteed. Increasing ℎ	decreases NoMod,

since more 𝒂 elements are used to compute 𝑏.

But note, distribution does not need to be centered at 0, it just needs to be concentrated!

Increasing attackable ℎ
Theory result: 𝜎 of training data determines recoverable ℎ.

• If x = a % s	 − b	 < q/2 is a normally distributed random variable, 68% of its values will be within
one 𝜎 of the mean. This is also the observed NoMod success threshold. Thus, we want 𝜎! < 𝑞/2.

• If 𝒔 is binary with Hamming weight ℎ and entries of 𝒂 have stdev 𝜎", then 𝜎! = ℎ 𝜎" + 𝜎# 	≈ ℎ
𝜎" (since 𝜎#	is negligible).

• Therefore, s is recoverable if ℎ 𝜎" 	< 𝑞/2 or 𝜎" =
$
% &

.

• This result highlights the importance of preprocessing: when 𝜎" is reduced by factor 𝜶, recoverable ℎ
increases by a factor of 𝜶𝟐!

Recovering ternary secrets

Our novel two-bit distinguisher enables recovery of more complex secrets.

High level idea: Let 𝑠! , 𝑠" be bits in secret 𝒔 and 𝑎! , 𝑎" be
corresponding coordinates of input	𝒂.

 If 𝑠! =	𝑠" then 𝐹 𝑎! + 𝑐 	≈ 𝐹 𝑎" + 𝑐 ,

where 𝐹 is the model and 𝑐 is a constant.

Recovering ternary secrets
Detailed two-bit distinguisher method:

• First, identify nonzero secret bits using binary distinguisher.

• Compare nonzero bits pairwise using the 𝐹 𝑎! + 𝑐 	intuition.

• Partition nonzero bits into two cliques based on similarities/differences in
observed 𝐹 𝑎! + 𝑐 vs. 𝐹 𝑎" + 𝑐 .

• Set bits in one clique to 1 and the others to −1,	check secret correctness.

• If correct, secret recovered! If not, continue training.

Scaling up dimension

We improve our choice of encoding base to attack larger dimensions.

• As modulus 𝑞 increases, required transformer vocabulary size also increases.

• Transformers can’t learn vocabularies with millions/billions of characters! Too complex!

• To reduce vocab size, we encode integers on two tokens, using base 𝐵 ≥ 𝑞.

• When 𝑞 is very large, we round the second bit using rounding token 𝑟, chosen so that
vocabulary size #

$
< 10,000.

Comparison with classical attacks

PICANTE and VERDE run faster than classical attacks but require more compute.

Comparison of Verde with concrete uSVP attack
n=256, binary secrets

Verde’s preprocessing time assumes full parallelization.

Future directions

• Generalize to general (non-sparse) small secret distributions.
• Scale to smaller q

How?
• Improve models’ ability to learn modular arithmetic.

• Decrease preprocessing compute/time requirements.

• Concentration methods for distribution

Thank you!
Questions?

23

